期刊文献+

基于半监督流形学习的WLAN室内定位算法 被引量:6

WLAN indoor positioning algorithm based on semi-supervised manifold learning
在线阅读 下载PDF
导出
摘要 针对无线局域网室内定位系统中,因参考点密集布设而带来的数据采集、更新及定位匹配运算量增加的问题,提出了一种新的基于半监督流形学习的降维判别嵌入定位算法。该算法利用少量已标记数据和部分未标记数据,通过求解目标函数最优化,对高维接收信号进行维数约减,保留最具判别力的定位特征,然后采用确定性定位算法找到定位特征与位置坐标的映射关系。实验结果表明,算法定位精度高于传统的定位算法,降低了离线阶段的数据采集工作量,便于后期数据库的实时更新。 A new positioning algorithm based on semi-supervised discriminant embedding manifold learning is proposed to resolve problems deriving from dense reference point deployment,such as tremendous time on location fingerprints collection,calibration and online computation in wireless local area network.The proposed algorithm utilizes a small amount of labeled data and partial unlabeled data to reduce the dimensionality of received signals.Its strong discriminative features are then retained in the low-dimensional forms through solving the objective function optimization.The reduced signals are taken as inputs to the deterministic positioning algorithm and the mapping between localization features and position coordinates is established.The experimental results show that the new algorithm decreases the labor cost to collect fingerprints in the offline stage and calibrate on time.Compared to the traditional methods,the proposed algorithm shows a considerable accuracy improvement in the same positioning environment.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第7期1422-1427,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61101122) 国家高技术研究发展计划(863计划)(2012AA120802)资助课题
关键词 无线局域网 半监督流形学习 降维 判别嵌入 定位算法 wireless local area network semi-supervised manifold learning dimensional reduction discriminant embedding positioning algorithm
作者简介 夏颖(1973-),女,博士研究生,主要研究方向为无线定位、人工智能与模式识别。E-mail:xyingw@hit.edu.cn 马琳(1980-),男,讲师,博士,主要研究方向为宽带无线传输、专用通信网络、无线定位技术。E-mail:malin@hit.edu.cn 张中兆(1951-),男,教授,博士,主要研究方向为数据通信、移动通信和卫星通信研究。E-mail:zzzhang@hit.edu.cn 周才发(1990-),男,硕士研究生,主要研究方向为无线传输、无线定位技术。E-mail:15145091307@139.com
  • 相关文献

参考文献3

二级参考文献29

  • 1Munoz D, Bouchereau F, and Vargas C, et al.. Position Location Techniques and Applications[M]. Burlington, USA, Academic Press, 2009: 17-21.
  • 2Gu Y Y, Lo A, and Niemegeers I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
  • 3Mengual L, Marbn O, and Eibe S. Clustering-based location in wireless networks[J]. Expert Systems with Applications, 2010, 36(4): 7552-7561.
  • 4Brunato M and Battiti R. Statistical learning theory for location ngerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825-845.
  • 5Bahl P and Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system[C]. Proc. IEEE INFOCOM, Tel Aviv, Israel, 2000: 775-784.
  • 6Carlos K F, Inmaculada M J, and Alicia G C, et al.. Nonparametric model comparison and uncertainty evaluation for signal strength indoor location[J]. IEEE Transactions on Mobile Computing, 2009, 8(9): 1250-1264.
  • 7Chen K Y, Yang Q, and Yin J, et al.. Power-efficient access-point selection for indoor location estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(7): 877-888.
  • 8Kushki A, Plataniotis K, and Venetsanopoulos A. Intelligent dynamic radio tracking in indoor wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(3): 405-419.
  • 9Fang S H, Lin T N, and Lin P. Location fingerprinting in a decorrelated space[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 685-691.
  • 10Lu J W, Plataniotis K N, and Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Transactions on Neural Networks, 2003, 14(1): 117-126.

共引文献54

同被引文献42

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部