期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究 被引量:32
1
作者 陈海周 王家序 +1 位作者 汤宝平 李俊阳 《振动与冲击》 EI CSCD 北大核心 2017年第9期45-50,73,共7页
为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚... 为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚动轴承故障信号表现为冲击波形的特点和MED降噪对冲击特征敏感的特性,采用MED对故障信号进行降噪处理,同时增强信号中的冲击成分;再结合TEO适合检测信号的瞬时变化,能有效提取故障信号冲击特征的特点,计算降噪信号的Teager能量信号,进行频谱分析提取滚动轴承的故障特征。通过对仿真信号和直升机滚动轴承混合故障信号进行分析,实验结果表明,该方法能有效提取强背景噪声环境中的微弱复合故障特征,具有一定的工程应用价值。 展开更多
关键词 直升机 滚动轴承 最小熵解卷积 TEAGER能量算子 故障诊断
在线阅读 下载PDF
基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法 被引量:23
2
作者 姚成玉 来博文 +2 位作者 陈东宁 孙飞 吕世君 《中国机械工程》 EI CAS CSCD 北大核心 2017年第24期3001-3012,共12页
提出了一种基于最小熵解卷积和变分模态分解以及模糊近似熵的故障特征提取方法,并采用优化支持向量机对故障进行识别分类。首先利用最小熵解卷积方法降低噪声干扰并增强故障信号中故障特征信息,进而对降噪后的信号进行变分模态分解,并... 提出了一种基于最小熵解卷积和变分模态分解以及模糊近似熵的故障特征提取方法,并采用优化支持向量机对故障进行识别分类。首先利用最小熵解卷积方法降低噪声干扰并增强故障信号中故障特征信息,进而对降噪后的信号进行变分模态分解,并利用模糊近似熵量化变分模态分解后包含故障特征信息的模态分量以构建特征向量,之后通过采用扩展粒子群算法优化惩罚因子和核函数参数的支持向量机,对故障样本训练并完成故障识别分类。将所提方法应用于滚动轴承不同损伤程度、不同故障部位的实验数据,验证了该方法的有效性。与基于局部均值分解的特征提取方法相对比,结果表明所提方法可以更精确地提取出滚动轴承故障特征,并能够更准确地完成不同故障的识别;通过与基于网格寻优算法优化的支持向量机方法和基于扩展粒子群优化的最小二乘支持向量机方法相对比,结果表明所提方法具有更好的分类性能,能达到更好的诊断效果。 展开更多
关键词 故障诊断 变分模态分 最小熵解卷积 模糊近似 支持向量机
在线阅读 下载PDF
基于最小熵解卷积的齿轮箱早期故障诊断 被引量:13
3
作者 冷军发 荆双喜 禹建功 《机械科学与技术》 CSCD 北大核心 2015年第3期445-448,共4页
齿轮箱发生早期故障时,其振动信号一般很微弱,且隐含的能反应出齿轮箱运转状态的冲击成分常被淹没在强烈的噪声中,直接做频谱分析或包络谱分析,很难提取其故障特征。论文将最小解卷积方法应用于炼胶机的齿轮箱故障诊断。首先利用该方法... 齿轮箱发生早期故障时,其振动信号一般很微弱,且隐含的能反应出齿轮箱运转状态的冲击成分常被淹没在强烈的噪声中,直接做频谱分析或包络谱分析,很难提取其故障特征。论文将最小解卷积方法应用于炼胶机的齿轮箱故障诊断。首先利用该方法对齿轮箱振动信号进行解卷积滤波处理,然后对滤波后的信号进行包络解调分析,最后提取出了该齿轮箱轴5上齿轮8(z8=28)齿根轻微裂纹的故障特征,实现了该齿轮箱的早期诊断。应用实例验证了最小熵解卷积方法的有效性和优点。 展开更多
关键词 齿轮箱 故障诊断 最小熵解卷积 包络分析
在线阅读 下载PDF
基于最小熵解卷积的带式输送机传动滚筒轴承故障诊断 被引量:8
4
作者 冷军发 郭松涛 +1 位作者 荆双喜 李新华 《河南理工大学学报(自然科学版)》 CAS 北大核心 2015年第4期514-519,共6页
带式输送机传动滚筒轴承发生故障时,特别是早期故障,其振动信号中隐含的脉冲故障信息很微弱,且常被淹没在强烈的噪音中,直接做频谱分析或包络分析,很难提取其故障特征。最小熵解卷积(Minimum Entropy Deconvolution,MED)通过最优滤波器... 带式输送机传动滚筒轴承发生故障时,特别是早期故障,其振动信号中隐含的脉冲故障信息很微弱,且常被淹没在强烈的噪音中,直接做频谱分析或包络分析,很难提取其故障特征。最小熵解卷积(Minimum Entropy Deconvolution,MED)通过最优滤波器对轴承微弱故障信号进行最优滤波,提高了信号的信噪比,然后对滤波后的信号进行包络解调分析,能够提取出信号中隐含的故障特征。将该方法应用于带式输送机传动滚筒中的滚动轴承故障诊断,成功提取出了轴承内圈的早期微弱点蚀故障特征。对FIR滤波器阶数L的选择进行了分析,以确保最优的MED解卷积效果。仿真与应用验证了最小熵解卷积方法在滚动轴承故障诊断的有效性和优点。 展开更多
关键词 带式输送机传动滚筒 滚动轴承 最小熵解卷积 故障诊断
在线阅读 下载PDF
基于最小熵解卷积的汽车点焊质量超声评价 被引量:2
5
作者 何智成 汲彦军 成艾国 《焊接学报》 EI CAS CSCD 北大核心 2018年第8期59-65,132,共8页
利用超声信号的时域信息,可以对焊点质量进行评价.白车身焊点超声检测的过程中,由于噪声信号的模糊作用,反映焊点质量的有用信息被掩盖,导致焊点质量评价结果不准确.超声探头接收到的超声信号可视为原始超声信号与噪声信号两种信号的叠... 利用超声信号的时域信息,可以对焊点质量进行评价.白车身焊点超声检测的过程中,由于噪声信号的模糊作用,反映焊点质量的有用信息被掩盖,导致焊点质量评价结果不准确.超声探头接收到的超声信号可视为原始超声信号与噪声信号两种信号的叠加,基于超声信号的卷积模型及稀疏特性,可利用最小熵盲反卷积(MED)对超声信号进行解卷积处理,分离重叠的焊点超声信号,恢复信号反射系数,获取准确的回波个数.通过仿真与试验,结果表明,最小熵解卷积对焊点重叠超声信号分离的有效性. 展开更多
关键词 超声检测 质量评价 最小熵解卷积 重叠回波
在线阅读 下载PDF
改进经验小波变换与最小熵解卷积在铁路轴承故障诊断中的应用 被引量:36
6
作者 乔志城 刘永强 廖英英 《振动与冲击》 EI CSCD 北大核心 2021年第2期81-90,118,共11页
经验小波变换是一种小波框架下的自适应信号分解方法,对旋转机械的非线性、非平稳振动信号有很好的分解作用。针对传统经验小波变换过程中频谱划分过多的问题,提出根据互信息值对频谱进行重新划分与合并的方法,能有效减少频带数量;选择... 经验小波变换是一种小波框架下的自适应信号分解方法,对旋转机械的非线性、非平稳振动信号有很好的分解作用。针对传统经验小波变换过程中频谱划分过多的问题,提出根据互信息值对频谱进行重新划分与合并的方法,能有效减少频带数量;选择峭度值最大的分量进行信号重构,再使用最小熵解卷积对重构信号进行降噪;对降噪后的信号进行包络分析,能够有效地诊断出滚动轴承的微弱故障。通过仿真信号与铁路货车轮对轴承实验信号验证了该方法的有效性,为下一步工程应用奠定了基础。 展开更多
关键词 经验小波变换 互信息 最小熵解卷积 包络分析
在线阅读 下载PDF
基于增强最小熵解卷积的航空发动机故障诊断 被引量:7
7
作者 赵艺珂 王家序 +2 位作者 张新 吴磊 刘治汶 《中国机械工程》 EI CAS CSCD 北大核心 2023年第2期193-200,共8页
为有效提取轴承的微弱故障特征,提出一种基于无偏自相关分析的增强最小熵解卷积方法。该方法的滤波器系数的迭代求解中,通过抑制滤波信号中的非周期成分,实现对周期性故障冲击的增强检测,完成轴承故障的准确辨识。仿真信号分析结果表明... 为有效提取轴承的微弱故障特征,提出一种基于无偏自相关分析的增强最小熵解卷积方法。该方法的滤波器系数的迭代求解中,通过抑制滤波信号中的非周期成分,实现对周期性故障冲击的增强检测,完成轴承故障的准确辨识。仿真信号分析结果表明,所提方法在复杂干扰下仍能准确提取轴承故障冲击序列。航空发动机故障诊断案例分析证实了该方法对复杂机械结构中轴承故障诊断的有效性。 展开更多
关键词 航空发动机 故障诊断 轴承 最小熵解卷积 无偏自相关
在线阅读 下载PDF
最小熵解卷积法轮对轴承故障诊断 被引量:4
8
作者 王晗 何刘 《中国测试》 CAS 北大核心 2016年第1期114-120,共7页
针对强噪声下轮对轴承弱故障特征难以提取,以及在实际信号检测中检测信号在故障点到检测点的传播路径中有变形和失真导致实际采集信号成分复杂难以判别的问题,提出基于最小熵解卷积的轴承故障诊断方法。该方法的核心是利用熵最小原理设... 针对强噪声下轮对轴承弱故障特征难以提取,以及在实际信号检测中检测信号在故障点到检测点的传播路径中有变形和失真导致实际采集信号成分复杂难以判别的问题,提出基于最小熵解卷积的轴承故障诊断方法。该方法的核心是利用熵最小原理设计最优滤波器,突出信号中的脉冲冲击,使滤波后信号近似于原始冲击信号,消除检测中传递路径对信号的干扰,对解卷积后的信号做包络谱分析达到轮对轴承故障诊断的目的。通过实验分析,基于最小熵解卷积的轴承故障诊断方法能很好突出冲击脉冲,在包络谱中能够准确检测到故障的基频和高次谐波。 展开更多
关键词 轮对轴承 最小熵解卷积 包络谱 故障诊断
在线阅读 下载PDF
基于最小熵解卷积和能量算子的滚动轴承故障诊断方法 被引量:2
9
作者 柳玉昕 石岩 +1 位作者 王美俊 田松峰 《组合机床与自动化加工技术》 北大核心 2016年第6期114-117,共4页
针对滚动轴承故障识别困难这一问题,提出了基于最小熵解卷积和能量算子的诊断方法。首先利用最小熵解卷积算法对原始振动信号进行预处理,削弱冗余噪声成分的干扰,增强故障特征,继而计算解卷积信号的Teager能量算子输出,并对所得的瞬时... 针对滚动轴承故障识别困难这一问题,提出了基于最小熵解卷积和能量算子的诊断方法。首先利用最小熵解卷积算法对原始振动信号进行预处理,削弱冗余噪声成分的干扰,增强故障特征,继而计算解卷积信号的Teager能量算子输出,并对所得的瞬时能量信号做频谱分析,最终通过分析能量谱中的频率成分实现故障类型的准确判定。实测信号分析结果表明,基于最小熵解卷积和能量算子的诊断方法能够有效提取轴承故障信号中的微弱特征信息,具有一定工程应用价值。 展开更多
关键词 滚动轴承 故障诊断 最小熵解卷积 TEAGER能量算子
在线阅读 下载PDF
基于最小熵解卷积的轨面缺陷漏磁信号处理 被引量:4
10
作者 朱玥 王平 +1 位作者 张兆珩 贾银亮 《电子测量技术》 北大核心 2022年第17期167-170,共4页
钢轨表面缺陷的漏磁检测会受到巡检速度等因素的影响,导致背景噪声增大,检测灵敏度降低。为了增强缺陷信号特征,提高漏磁信号的信噪比,提出了一种基于最小熵解卷积的漏磁信号处理方法。通过目标函数法,计算得到最优的逆滤波器参数,对采... 钢轨表面缺陷的漏磁检测会受到巡检速度等因素的影响,导致背景噪声增大,检测灵敏度降低。为了增强缺陷信号特征,提高漏磁信号的信噪比,提出了一种基于最小熵解卷积的漏磁信号处理方法。通过目标函数法,计算得到最优的逆滤波器参数,对采集到的漏磁信号进行滤波处理。为衡量最小熵解卷积算法滤波效果,将处理得到的缺陷信号和背景噪声信号的峰峰值与小波变换法和中值滤波法进行对比。实验结果表明,最小熵解卷积算法对缺陷信号起到了明显的增强作用,且其效果优于小波变换和中值滤波。 展开更多
关键词 最小熵解卷积 特征增强 缺陷识别 漏磁检测
在线阅读 下载PDF
基于局部特征尺度分解与最小熵解卷积的轴承故障诊断 被引量:6
11
作者 崔伟成 张征 《轴承》 北大核心 2018年第5期51-55,共5页
为准确进行滚动轴承的故障诊断,结合局部特征尺度分解(LCD)和最小熵解卷积(MED)给出了一种新的故障诊断方法。首先,对轴承振动信号进行局部特征尺度分解,得到若干个内禀尺度分量;然后,依据互相关系数指标,采用聚类分析方法自动选取有用... 为准确进行滚动轴承的故障诊断,结合局部特征尺度分解(LCD)和最小熵解卷积(MED)给出了一种新的故障诊断方法。首先,对轴承振动信号进行局部特征尺度分解,得到若干个内禀尺度分量;然后,依据互相关系数指标,采用聚类分析方法自动选取有用分量并叠加作为重构信号;最后,应用最小熵解卷积将重构信号降噪,并应用包络分析技术进行故障诊断。通过轴承内、外圈故障振动数据的分析表明:经LCD-MED处理后,振动信号的峭度值得到了较大提高,故障特征频率更加突出,基于LCD-MED的方法在轴承故障诊断中有效且合理。 展开更多
关键词 滚动轴承 故障诊断 局部特征尺度分 聚类分析 最小熵解卷积
在线阅读 下载PDF
最小周期相关熵解卷积结合窄带解调的轴承复合故障诊断研究 被引量:10
12
作者 张晓涛 唐力伟 +1 位作者 王平 邓士杰 《振动工程学报》 EI CSCD 北大核心 2015年第4期666-672,共7页
声发射检测齿轮箱故障灵敏度高,但故障信号具有高频宽带且噪声干扰严重的特点,针对齿轮箱轴承复合故障声发射信号处理问题,提出最小周期相关熵解卷积与窄带解调相结合的复合故障诊断方法,基于故障出现的周期信息,利用最小周期相关熵解... 声发射检测齿轮箱故障灵敏度高,但故障信号具有高频宽带且噪声干扰严重的特点,针对齿轮箱轴承复合故障声发射信号处理问题,提出最小周期相关熵解卷积与窄带解调相结合的复合故障诊断方法,基于故障出现的周期信息,利用最小周期相关熵解卷积实现故障信号分离,通过窄带解调方法获得最优解调中心频率,抑制宽频带解调引入的噪声干扰,仿真和实验数据处理结果表明:此方法适宜处理轴承复合故障声发射信号,成功实现了复合故障诊断。 展开更多
关键词 故障诊断 声发射 最小周期相关卷积 窄带 复合故障
在线阅读 下载PDF
一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 被引量:22
13
作者 齐咏生 樊佶 +2 位作者 李永亭 高学金 刘利强 《振动与冲击》 EI CSCD 北大核心 2020年第21期140-150,共11页
针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方... 针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方法。使用ARSSD分析故障信号,并定义一个新的复合指标作为目标函数,利用布谷鸟寻优算法(CSA)对高、低品质因子进行优化选择,获得包含瞬态冲击成分的最优低共振分量;计算其多点峭度谱,提取低共振分量中包含的故障冲击周期成分;之后设定适当的周期区间,进行解卷积运算分离不同的故障特征;通过包络解调,分析谱图中突出的故障特征频率进而识别故障类型。实验平台模拟了滚动轴承两种和三种故障的复合情况,并对所提算法进行了验证,结果表明该方法可有效的从复合故障中提取出各类故障特征,实现故障诊断。 展开更多
关键词 振动信号 复合故障 故障诊断 RSSD 最优最小熵解卷积修正
在线阅读 下载PDF
基于最大相关峭度解卷积算法的发电机特征振动信号增强检测 被引量:9
14
作者 何玉灵 王珂 +3 位作者 仲昊 蒙玉超 王晓龙 唐贵基 《华北电力大学学报(自然科学版)》 CAS 北大核心 2017年第3期67-73,89,共8页
采用最大相关峭度解卷积算法(MCKD)对发电机定子的振动信号进行处理,得到信号处理后的时域波形与频谱,并根据提取得到的故障特征信息实现了对发电机运行状态的识别。为了排除偶然性,用最大相关峭度解卷积算法对发电机定子的正常信号和... 采用最大相关峭度解卷积算法(MCKD)对发电机定子的振动信号进行处理,得到信号处理后的时域波形与频谱,并根据提取得到的故障特征信息实现了对发电机运行状态的识别。为了排除偶然性,用最大相关峭度解卷积算法对发电机定子的正常信号和定子匝间短路故障信号都进行了处理,从而证明了这一算法用于振动信号故障特征提取的有效性。通过和当前主流算法之一的最小熵解卷积算法(MED)的处理结果进行对比,分析发现本文算法比最小熵解卷积算法的故障特征信息提取更加明显和准确。结果表明,最大相关峭度解卷积对故障信号特征频率的提取有良好的效果,并与当前主流算法相比有一定的优越性。 展开更多
关键词 发电机 定子匝间短路 振动信号 最小熵解卷积(MED) 最大相关峭度卷积(MCKD)
在线阅读 下载PDF
基于信号子空间的新型盲解卷积方法 被引量:3
15
作者 周涛 赵明 +1 位作者 郭栋 欧曙东 《振动与冲击》 EI CSCD 北大核心 2022年第3期139-147,共9页
解卷积方法已广泛应用于振动信号的故障冲击提取。然而设备运行工况复杂多变、故障特征周期难以准确预知以及随机冲击干扰,使得当前的解卷积方法难以适应工业现场复杂环境下故障冲击增强的需求。针对该问题,提出了一种基于信号子空间的... 解卷积方法已广泛应用于振动信号的故障冲击提取。然而设备运行工况复杂多变、故障特征周期难以准确预知以及随机冲击干扰,使得当前的解卷积方法难以适应工业现场复杂环境下故障冲击增强的需求。针对该问题,提出了一种基于信号子空间的新型盲解卷积方法。该方法通过奇异值分解(SVD)方法将测试信号空间分解,分离各子空间,在此基础上通过稀疏编码收缩抑制子空间噪声,以脉冲稀疏指数为指标筛选有效子空间,最后迭代实现故障脉冲提取。轴承变转速仿真试验和列车轴承试验结果表明,该方法不仅可以有效消除随机冲击和噪声,避免能量对子空间筛选的影响,而且在缺乏准确的故障特征周期情况下仍能实现故障脉冲的准确提取。 展开更多
关键词 卷积 奇异值分(SVD) 最小熵解卷积 变转速
在线阅读 下载PDF
基于最大相关峭度解卷积的滚动轴承复合故障诊断方法 被引量:7
16
作者 张永鑫 宋晓庆 +2 位作者 张晓冬 王志阳 冷军发 《噪声与振动控制》 CSCD 2020年第4期98-102,160,共6页
受环境噪声、传递路径、信号衰减以及源信号本身比较微弱的影响,滚动轴承早期微弱冲击性故障的信号特征难以提取。近年来,最小熵解卷积(Minimum Entropy Deconvolution,MED)已经成功应用在旋转机械故障检测中来提取振动冲击。MED方法的... 受环境噪声、传递路径、信号衰减以及源信号本身比较微弱的影响,滚动轴承早期微弱冲击性故障的信号特征难以提取。近年来,最小熵解卷积(Minimum Entropy Deconvolution,MED)已经成功应用在旋转机械故障检测中来提取振动冲击。MED方法的提取过程是一个迭代选择的过程,通过迭代选择一个有限脉冲响应使信号的熵最小,从而对信号进行滤波。但是该方法有一定的局限性:其对于单一冲击的信号解卷积效果良好,但是处理具有强噪声或者多个冲击源共同作用时的信号很困难。为了解决这个问题,提出新的解卷积方法:最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD),可有效利用滚动轴承故障周期性冲击的特点,其与MED相比,克服了单一冲击的限制,对两种冲击源甚至是多种共同卷积的解卷积具有更好的特征提取效果。仿真和实验对比验证了该方法具有良好的降噪和故障特征增强效果。 展开更多
关键词 故障诊断 滚动轴承复合故障 最小熵解卷积 最大相关峭度卷积 特征提取
在线阅读 下载PDF
基于最大相关峭度解卷积行星齿轮箱微弱故障诊断 被引量:6
17
作者 刘峰 任丽佳 《噪声与振动控制》 CSCD 北大核心 2022年第5期154-158,共5页
最小熵解卷积(MED)是一种常规的微弱故障特征提取方法,对局部故障脉冲有比较好的提取效果,但是对于含有周期性故障脉冲的振动信号,故障特征识别率比较低。微弱故障时候的行星齿轮箱产生的振动信号通常是周期性的,MED不能取得比较好的识... 最小熵解卷积(MED)是一种常规的微弱故障特征提取方法,对局部故障脉冲有比较好的提取效果,但是对于含有周期性故障脉冲的振动信号,故障特征识别率比较低。微弱故障时候的行星齿轮箱产生的振动信号通常是周期性的,MED不能取得比较好的识别效果。针对行星齿轮微弱故障特征难以提取的问题,将最大相关峭度解卷积(MCKD)方法应用到行星齿轮箱微弱故障特征提取中。MCKD避免了最小熵解卷积对周期性冲击识别度低的缺点,同时可以有效抑制行星齿轮箱中谐波和噪声分量,准确地识别出行星齿轮箱所处状态。为了验证该方法在行星齿轮箱中的应用价值,将两种方法分别应用在传动系统综合诊断平台收集到的振动信号中,结果表明MCKD算法对于行星齿轮箱微弱故障识别有比较好的效果。 展开更多
关键词 故障诊断 行星齿轮箱 微弱故障 最小熵解卷积 最大相关峭度卷积
在线阅读 下载PDF
RSK-MOMEDA与PF在滚动轴承故障预测中的应用
18
作者 赵英杰 傅子霞 沈建 《机械设计与制造》 北大核心 2025年第6期40-45,共6页
针对滚动轴承故障预测起始点确定困难以及故障预测结果不科学的问题,深入开展滚动轴承故障预测方法研究,提出了基于快速谱峭度-多点最优最小熵解卷积(Rapid Spectral Kurtosis and Multipoint Optimal Minimum Entropy Deconvolution Ad... 针对滚动轴承故障预测起始点确定困难以及故障预测结果不科学的问题,深入开展滚动轴承故障预测方法研究,提出了基于快速谱峭度-多点最优最小熵解卷积(Rapid Spectral Kurtosis and Multipoint Optimal Minimum Entropy Deconvolution Adjusted,简称RSK-MOMEDA)与粒子滤波(Particle Filter,简称PF)的滚动轴承故障预测方法。通过RSK-MOMEDA方法实现轴承早期故障特征增强,进而挖掘出滚动轴承全寿命退化数据中的早期故障发生节点,从而为后续故障预测起始点的确定提供科学依据;基于PF方法的概率统计特性,开展滚动轴承故障预测并给出置信区间下的故障预测结果,有效提升滚动轴承故障预测的置信度,为工程实际提供一种有益故障预测参考方法。 展开更多
关键词 滚动轴承 早期故障诊断 快速谱峭度-多点最优最小熵解卷积 粒子滤波 故障预测
在线阅读 下载PDF
MED和分层模糊熵在滚动轴承故障诊断中的应用 被引量:10
19
作者 刘艳芳 刘尚旺 《机械设计与制造》 北大核心 2018年第11期49-52,56,共5页
针对单一的小波包能量特征难以实现滚动轴承故障准确诊断的局限性,提出了一种新的基于最小熵解卷积(Minimum Entropy Deconvolution,MED)、小波包能量谱和分层模糊熵的滚动轴承故障诊断方法。采用MED算法抑制噪声,突出故障冲击特征;分... 针对单一的小波包能量特征难以实现滚动轴承故障准确诊断的局限性,提出了一种新的基于最小熵解卷积(Minimum Entropy Deconvolution,MED)、小波包能量谱和分层模糊熵的滚动轴承故障诊断方法。采用MED算法抑制噪声,突出故障冲击特征;分别提取小波包分解后不同频段能量谱和分层模糊熵融合作为特征向量,通过支持向量机完成了对于滚动轴承的故障分类。将提出的方法应用于滚动轴承实验数据进行分析,通过对比结果验证了所提方法有更高的分类准确性和更大的实用性。 展开更多
关键词 滚动轴承 故障诊断 最小熵解卷积 小波包 模糊
在线阅读 下载PDF
联合CEF-MOMEDA的风机高速端轴承潜隐性故障敏感信息提取方法
20
作者 蔡敏 张强 +2 位作者 秦波 张海平 罗权毅 《机电工程》 北大核心 2025年第8期1428-1439,共12页
在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首... 在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首先,将拾取的振动数据由变分模态分解为若干个表征原数据不同成分的本征模分量;然后,根据上述分量能量的变化,量化、评估所包含的潜隐性故障占比,筛选并提取敏感成分后对故障信号进行了重构;接着,利用多点最优最小熵解卷积对重构后的数据进行了有效成分增强提取;最后,将上述能量波动评价准则与多点最优最小熵解卷积联合提取的敏感信息数据作为深度置信网络(DBN)的输入,构建了滚动轴承状态智能辨识模型,采用现场实验与凯斯西储大学(CWRU)数据集对CEF-MOMEDA的方法进行了验证。研究结果表明:基于CEF-MOMEDA-DBN的模型在风机滚动轴承诊断中的故障识别率更高;在凯斯西储大学数据集上,与集合经验模态分解(EEMD)、局部均值分解(LMD)相比,CEF-MOMEDA方法联合能量波动准则提取敏感信息数据并作为智能辨识模型的输入后,故障识别率分别提高了2.5%和1.25%。该方法能够有效提高故障识别的准确率,具有更强的实用性和泛化性。 展开更多
关键词 MW级半直驱风电机组 滚动轴承故障诊断 敏感成分联合提取 相关能量波动 多点最优最小熵解卷积 深度置信网络 集合经验模态分 局部均值分
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部