介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长...介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。展开更多
利用氢核磁共振(1H nuclear magnetic resonance,1H NMR)谱图结合正交偏最小二乘(orthogonal partial least squares,OPLS)法对油菜蜂蜜和果葡糖浆掺假蜂蜜进行判别分析。采集了303个油菜蜜样品和180个按照不同比例配制的果葡糖浆掺假...利用氢核磁共振(1H nuclear magnetic resonance,1H NMR)谱图结合正交偏最小二乘(orthogonal partial least squares,OPLS)法对油菜蜂蜜和果葡糖浆掺假蜂蜜进行判别分析。采集了303个油菜蜜样品和180个按照不同比例配制的果葡糖浆掺假蜂蜜样品的1H NMR谱图,并对油菜蜜主要糖类成分和部分低含量化合物进行了信号归属。采用OPLS对训练集数据进行分析,建立蜂蜜果葡糖浆掺假判别模型。通过排列实验法对模型进行可靠性检验。结果显示,油菜蜜和果葡糖浆掺假蜂蜜样品在OPLS得分图中能明显区分。训练集和测试集样品的总体判别正确率分别为98.40%和98.24%。因此,1H NMR与OPLS相结合可以实现油菜蜜中果葡糖浆掺假的快速鉴别。该方法是基于对蜂蜜成分的整体分析,避免了仅仅分析个别成分指标的检验方法中存在的缺陷,为蜂蜜质量监控提供了一种新思路。展开更多
为解决传统初始地应力场反演方法存在边界条件筛选能力弱、易受数据过拟合干扰以及难以解析多重边界相互作用的问题,提出一种基于LASSO-OLS(least absolute shrinkage and selection operator-ordinary least squares)的两阶段初始地应...为解决传统初始地应力场反演方法存在边界条件筛选能力弱、易受数据过拟合干扰以及难以解析多重边界相互作用的问题,提出一种基于LASSO-OLS(least absolute shrinkage and selection operator-ordinary least squares)的两阶段初始地应力场反演方法。该方法首先通过对候选边界条件应力矩阵和实测应力矩阵进行Frobenius范数标准化处理,消除不同边界条件数据量级差异的影响;然后,利用LASSO回归的L1正则化约束,从候选边界条件的回归系数路径图中筛选关键影响因素,剔除冗余与弱相关项;最后,针对筛选出的核心变量,采用普通最小二乘回归进行无偏估计,构建兼具稀疏性与准确性的地应力场反演模型。研究结果表明:1)在工程应用实例中,借助LASSO回归从11个候选边界条件中筛选出5个关键因素,显著降低模型复杂度;2)模型正则化参数在标准误差内取值,拟合结果能够保持较高的复相关系数(R=0.995 2),表明筛选后的边界条件有效捕捉了初始地应力场特征;3)初始地应力场反演模型通过LASSO回归筛选,在解析多重边界相互作用时表现出较高的稳定性和物理合理性;4)与传统方法相比,该方法能有效避免初始地应力场反演出现过拟合问题,提高反演结果的鲁棒性。展开更多
文摘介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。
文摘利用氢核磁共振(1H nuclear magnetic resonance,1H NMR)谱图结合正交偏最小二乘(orthogonal partial least squares,OPLS)法对油菜蜂蜜和果葡糖浆掺假蜂蜜进行判别分析。采集了303个油菜蜜样品和180个按照不同比例配制的果葡糖浆掺假蜂蜜样品的1H NMR谱图,并对油菜蜜主要糖类成分和部分低含量化合物进行了信号归属。采用OPLS对训练集数据进行分析,建立蜂蜜果葡糖浆掺假判别模型。通过排列实验法对模型进行可靠性检验。结果显示,油菜蜜和果葡糖浆掺假蜂蜜样品在OPLS得分图中能明显区分。训练集和测试集样品的总体判别正确率分别为98.40%和98.24%。因此,1H NMR与OPLS相结合可以实现油菜蜜中果葡糖浆掺假的快速鉴别。该方法是基于对蜂蜜成分的整体分析,避免了仅仅分析个别成分指标的检验方法中存在的缺陷,为蜂蜜质量监控提供了一种新思路。
文摘为解决传统初始地应力场反演方法存在边界条件筛选能力弱、易受数据过拟合干扰以及难以解析多重边界相互作用的问题,提出一种基于LASSO-OLS(least absolute shrinkage and selection operator-ordinary least squares)的两阶段初始地应力场反演方法。该方法首先通过对候选边界条件应力矩阵和实测应力矩阵进行Frobenius范数标准化处理,消除不同边界条件数据量级差异的影响;然后,利用LASSO回归的L1正则化约束,从候选边界条件的回归系数路径图中筛选关键影响因素,剔除冗余与弱相关项;最后,针对筛选出的核心变量,采用普通最小二乘回归进行无偏估计,构建兼具稀疏性与准确性的地应力场反演模型。研究结果表明:1)在工程应用实例中,借助LASSO回归从11个候选边界条件中筛选出5个关键因素,显著降低模型复杂度;2)模型正则化参数在标准误差内取值,拟合结果能够保持较高的复相关系数(R=0.995 2),表明筛选后的边界条件有效捕捉了初始地应力场特征;3)初始地应力场反演模型通过LASSO回归筛选,在解析多重边界相互作用时表现出较高的稳定性和物理合理性;4)与传统方法相比,该方法能有效避免初始地应力场反演出现过拟合问题,提高反演结果的鲁棒性。