期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于半监督深度神经网络管路抓举车伸缩臂的可靠性分析
1
作者 袁国秩 刘伟 +3 位作者 闫子龙 张睿琳 赵明轩 桑建兵 《机械强度》 北大核心 2025年第8期159-167,共9页
伸缩臂作为管路抓举车的关键部件,连接着升降台和机械爪并承担着大部分载荷,对其进行可靠性分析十分必要。由于传统的可靠性方法对于多维度不确定性问题存在计算成本高且精度不高等问题,为了解决这些问题,基于Adams动力学仿真、半监督... 伸缩臂作为管路抓举车的关键部件,连接着升降台和机械爪并承担着大部分载荷,对其进行可靠性分析十分必要。由于传统的可靠性方法对于多维度不确定性问题存在计算成本高且精度不高等问题,为了解决这些问题,基于Adams动力学仿真、半监督学习、深度神经网络并结合蒙特卡洛(Monte Carlo,MC)方法提出了一种应用于工程机械可靠性分析的方法。建立了管路抓举车的虚拟样机模型,确定了其危险工况,并结合伸缩臂模型的几何参数和其总体结构确定了影响最大的von Mises应力的不确定因素,并对其进行敏感性分析;使用最优拉丁超立方采样(Optimal Latin Hypercube Sampling,OLHS),依据不确定参数的分布情况进行采样,利用有限元分析软件Ansys WorkBench建立有限元模型,得到样本量对应的输出结果,并引入半监督学习对有限元模拟数据进行处理,提高深度神经网络训练的准确度;最后根据第四强度理论确定了伸缩臂部件的破坏准则,并结合深度神经网络和MC方法预测了伸缩臂部件的可靠度和失效概率。研究结果表明,此方法远高于实际工程要求精度,具有一定的工程指导意义。 展开更多
关键词 伸缩臂 可靠性分析 半监督学习 深度神经网络 最优拉丁超立方采样
在线阅读 下载PDF
一种改进PSO-LSSVM模型的发动机后向RCS序列预测
2
作者 傅莉 关一 +1 位作者 孙旭 崔哲 《航空发动机》 北大核心 2025年第2期91-96,共6页
为解决现有预测模型对发动机后向雷达散射截面(RCS)序列预测精度低的问题,提出了改进的粒子群(PSO)优化算法,建立了PSO-LSSVM预测模型。在传统粒子群优化算法基础上应用最优拉丁超立方采样方法进行粒子群位置初始化,得益于最优拉丁超立... 为解决现有预测模型对发动机后向雷达散射截面(RCS)序列预测精度低的问题,提出了改进的粒子群(PSO)优化算法,建立了PSO-LSSVM预测模型。在传统粒子群优化算法基础上应用最优拉丁超立方采样方法进行粒子群位置初始化,得益于最优拉丁超立方采样技术的空间填充的特性,初始粒子可以较为均匀有规律地分布在整个设计区域,在粒子寻优过程中可以寻到更优的采样点;通过动态调整惯性权重以及学习因子,平衡全局和局部的搜索能力,避免了算法容易陷入局部最优的问题;设计改进的PSO算法对最小二乘向量机(LSSVM)的核宽参数σ和正规化参数γ进行寻优,提高了LSSVM模型计算效率,改善了适应误差的最小化和平滑程度,采用PSO-LSSVM模型与自回归积分滑动平均模型(ARIMA)以及LSSVM模型对发动机后机身RCS序列进行预测,并将预测结果通过模型评价指标(平均绝对误差、均方根误差和平均绝对百分比误差)进行对比分析,结果表明:PSO-LSSVM模型预测结果相比其他2种模型的预测精度提高30%以上。 展开更多
关键词 雷达散射截面 K最近邻法 核密度估计 统计特性 最优拉丁超立方采样方法 粒子群化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部