期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于半监督深度神经网络管路抓举车伸缩臂的可靠性分析
1
作者
袁国秩
刘伟
+3 位作者
闫子龙
张睿琳
赵明轩
桑建兵
《机械强度》
北大核心
2025年第8期159-167,共9页
伸缩臂作为管路抓举车的关键部件,连接着升降台和机械爪并承担着大部分载荷,对其进行可靠性分析十分必要。由于传统的可靠性方法对于多维度不确定性问题存在计算成本高且精度不高等问题,为了解决这些问题,基于Adams动力学仿真、半监督...
伸缩臂作为管路抓举车的关键部件,连接着升降台和机械爪并承担着大部分载荷,对其进行可靠性分析十分必要。由于传统的可靠性方法对于多维度不确定性问题存在计算成本高且精度不高等问题,为了解决这些问题,基于Adams动力学仿真、半监督学习、深度神经网络并结合蒙特卡洛(Monte Carlo,MC)方法提出了一种应用于工程机械可靠性分析的方法。建立了管路抓举车的虚拟样机模型,确定了其危险工况,并结合伸缩臂模型的几何参数和其总体结构确定了影响最大的von Mises应力的不确定因素,并对其进行敏感性分析;使用最优拉丁超立方采样(Optimal Latin Hypercube Sampling,OLHS),依据不确定参数的分布情况进行采样,利用有限元分析软件Ansys WorkBench建立有限元模型,得到样本量对应的输出结果,并引入半监督学习对有限元模拟数据进行处理,提高深度神经网络训练的准确度;最后根据第四强度理论确定了伸缩臂部件的破坏准则,并结合深度神经网络和MC方法预测了伸缩臂部件的可靠度和失效概率。研究结果表明,此方法远高于实际工程要求精度,具有一定的工程指导意义。
展开更多
关键词
伸缩臂
可靠性分析
半监督学习
深度神经网络
最优拉丁超立方采样
在线阅读
下载PDF
职称材料
一种改进PSO-LSSVM模型的发动机后向RCS序列预测
2
作者
傅莉
关一
+1 位作者
孙旭
崔哲
《航空发动机》
北大核心
2025年第2期91-96,共6页
为解决现有预测模型对发动机后向雷达散射截面(RCS)序列预测精度低的问题,提出了改进的粒子群(PSO)优化算法,建立了PSO-LSSVM预测模型。在传统粒子群优化算法基础上应用最优拉丁超立方采样方法进行粒子群位置初始化,得益于最优拉丁超立...
为解决现有预测模型对发动机后向雷达散射截面(RCS)序列预测精度低的问题,提出了改进的粒子群(PSO)优化算法,建立了PSO-LSSVM预测模型。在传统粒子群优化算法基础上应用最优拉丁超立方采样方法进行粒子群位置初始化,得益于最优拉丁超立方采样技术的空间填充的特性,初始粒子可以较为均匀有规律地分布在整个设计区域,在粒子寻优过程中可以寻到更优的采样点;通过动态调整惯性权重以及学习因子,平衡全局和局部的搜索能力,避免了算法容易陷入局部最优的问题;设计改进的PSO算法对最小二乘向量机(LSSVM)的核宽参数σ和正规化参数γ进行寻优,提高了LSSVM模型计算效率,改善了适应误差的最小化和平滑程度,采用PSO-LSSVM模型与自回归积分滑动平均模型(ARIMA)以及LSSVM模型对发动机后机身RCS序列进行预测,并将预测结果通过模型评价指标(平均绝对误差、均方根误差和平均绝对百分比误差)进行对比分析,结果表明:PSO-LSSVM模型预测结果相比其他2种模型的预测精度提高30%以上。
展开更多
关键词
雷达散射截面
K最近邻法
核密度估计
统计特性
最优拉丁超立方采样
方法
粒子群
优
化算法
在线阅读
下载PDF
职称材料
题名
基于半监督深度神经网络管路抓举车伸缩臂的可靠性分析
1
作者
袁国秩
刘伟
闫子龙
张睿琳
赵明轩
桑建兵
机构
河北工业大学机械工程学院
廊坊景隆重工机械有限公司
出处
《机械强度》
北大核心
2025年第8期159-167,共9页
基金
河北省自然科学基金项目(A2020202015)
国防科技重点实验室基金项目。
文摘
伸缩臂作为管路抓举车的关键部件,连接着升降台和机械爪并承担着大部分载荷,对其进行可靠性分析十分必要。由于传统的可靠性方法对于多维度不确定性问题存在计算成本高且精度不高等问题,为了解决这些问题,基于Adams动力学仿真、半监督学习、深度神经网络并结合蒙特卡洛(Monte Carlo,MC)方法提出了一种应用于工程机械可靠性分析的方法。建立了管路抓举车的虚拟样机模型,确定了其危险工况,并结合伸缩臂模型的几何参数和其总体结构确定了影响最大的von Mises应力的不确定因素,并对其进行敏感性分析;使用最优拉丁超立方采样(Optimal Latin Hypercube Sampling,OLHS),依据不确定参数的分布情况进行采样,利用有限元分析软件Ansys WorkBench建立有限元模型,得到样本量对应的输出结果,并引入半监督学习对有限元模拟数据进行处理,提高深度神经网络训练的准确度;最后根据第四强度理论确定了伸缩臂部件的破坏准则,并结合深度神经网络和MC方法预测了伸缩臂部件的可靠度和失效概率。研究结果表明,此方法远高于实际工程要求精度,具有一定的工程指导意义。
关键词
伸缩臂
可靠性分析
半监督学习
深度神经网络
最优拉丁超立方采样
Keywords
Telescopic arm
Reliability analysis
Semi-supervised learning
Deep neural networks
Optimal Latin hypercube sampling
分类号
TH213 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
一种改进PSO-LSSVM模型的发动机后向RCS序列预测
2
作者
傅莉
关一
孙旭
崔哲
机构
沈阳航空航天大学自动化学院
中国航发沈阳发动机研究所
国家能源集团科学技术研究院有限公司
出处
《航空发动机》
北大核心
2025年第2期91-96,共6页
基金
国家自然科学基金(61602321)资助。
文摘
为解决现有预测模型对发动机后向雷达散射截面(RCS)序列预测精度低的问题,提出了改进的粒子群(PSO)优化算法,建立了PSO-LSSVM预测模型。在传统粒子群优化算法基础上应用最优拉丁超立方采样方法进行粒子群位置初始化,得益于最优拉丁超立方采样技术的空间填充的特性,初始粒子可以较为均匀有规律地分布在整个设计区域,在粒子寻优过程中可以寻到更优的采样点;通过动态调整惯性权重以及学习因子,平衡全局和局部的搜索能力,避免了算法容易陷入局部最优的问题;设计改进的PSO算法对最小二乘向量机(LSSVM)的核宽参数σ和正规化参数γ进行寻优,提高了LSSVM模型计算效率,改善了适应误差的最小化和平滑程度,采用PSO-LSSVM模型与自回归积分滑动平均模型(ARIMA)以及LSSVM模型对发动机后机身RCS序列进行预测,并将预测结果通过模型评价指标(平均绝对误差、均方根误差和平均绝对百分比误差)进行对比分析,结果表明:PSO-LSSVM模型预测结果相比其他2种模型的预测精度提高30%以上。
关键词
雷达散射截面
K最近邻法
核密度估计
统计特性
最优拉丁超立方采样
方法
粒子群
优
化算法
Keywords
radar cross section
K-nearest neighbor method
kernel density estimation
statistical characteristics
optimal Latin hypercube sampling method
particle swarm optimization algorithm
分类号
TN954.5 [电子电信—信号与信息处理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于半监督深度神经网络管路抓举车伸缩臂的可靠性分析
袁国秩
刘伟
闫子龙
张睿琳
赵明轩
桑建兵
《机械强度》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
一种改进PSO-LSSVM模型的发动机后向RCS序列预测
傅莉
关一
孙旭
崔哲
《航空发动机》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部