The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization ...Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.展开更多
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
基金Project(61374054)supported by the National Natural Science Foundation of ChinaProject(2013JQ8038)supported by the Shanxi Provincal Natural Science Foundation Research Projection,China
文摘Synchronization analysis and design problems for uncertain time-delayed high-order complex systems with dynamic output feedback synchronization protocols are investigated. By stating projection on the synchronization subspace and the complement synchronization subspace, synchronization problems are transformed into simultaneous stabilization problems of multiple subsystems related to eigenvalues of the Laplacian matrix of the interaction topology of a complex system. In terms of linear matrix inequalities(LMIs), sufficient conditions for robust synchronization are presented, which include only five LMI constraints.By the changing variable method, sufficient conditions for robust synchronization in terms of LMIs and matrix equalities are given,which can be checked by the cone complementarily linearization approach. The effectiveness of theoretical results is shown by numerical examples.