In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a...In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.展开更多
A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is gr...A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.展开更多
基金supported by National Natural Science Foundation of China under Grant No.61240040
文摘In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.
基金This work was supported by the State Key Program of Na- tional Nature Science Foundation of China under Grants No. U0835003, No. 60872087.
文摘A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.