期刊文献+
共找到335篇文章
< 1 2 17 >
每页显示 20 50 100
齐河县玉米灌溉决策的大数据支持探究
1
作者 胡俊英 史瑞宏 《农业工程技术》 2025年第8期39-40,共2页
该文以山东齐河县玉米灌溉为研究对象,探讨了基于大数据支持的玉米灌溉决策优化策略。齐河县采用综合灌溉模式,结合滴灌等节水技术,已取得一定成效。文章指出,大数据技术在玉米灌溉决策中具有重要意义,如优化资源配置、预防灾害风险、... 该文以山东齐河县玉米灌溉为研究对象,探讨了基于大数据支持的玉米灌溉决策优化策略。齐河县采用综合灌溉模式,结合滴灌等节水技术,已取得一定成效。文章指出,大数据技术在玉米灌溉决策中具有重要意义,如优化资源配置、预防灾害风险、提升产量品质等。提出了数据集成构建灌溉决策支持系统、智能预测动态调整灌溉策略、精准施肥实现水肥一体化管理等优化策略。这些策略有助于进一步提升玉米灌溉水平,促进农业可持续发展。 展开更多
关键词 玉米灌溉 决策优化 数据支持
在线阅读 下载PDF
基于邻域原理计算海量数据支持向量的研究 被引量:24
2
作者 张文生 丁辉 王珏 《软件学报》 EI CSCD 北大核心 2001年第5期711-720,共10页
使用支持向量机理论计算海量数据的支持向量是相当困难的 .为了解决这个问题 ,提出了基于邻域原理计算支持向量的方法 .在对支持向量机原理与邻域原理比较分析的基础上讨论了以下问题 :(1)构建了从样本空间经过特征空间到扩维空间的复... 使用支持向量机理论计算海量数据的支持向量是相当困难的 .为了解决这个问题 ,提出了基于邻域原理计算支持向量的方法 .在对支持向量机原理与邻域原理比较分析的基础上讨论了以下问题 :(1)构建了从样本空间经过特征空间到扩维空间的复合内积函数 ,给出计算支持向量的邻域思想 ;(2 )将支持向量机的理论建立在距离空间上 ,设计出了计算支持向量的邻域算法 ,从而把该算法理解为简化计算二次规划的方法 ;(3)实验结果说明 ,邻域原理可以有效地解决对海量数据计算支持向量的问题 . 展开更多
关键词 邻域原理 海量数据支持向量 人工神经网络 非线性优化
在线阅读 下载PDF
大数据支持下的对外政策决策过程:优化与局限 被引量:4
3
作者 沈本秋 《国际论坛》 CSSCI 北大核心 2016年第5期32-37,80,共6页
在大数据技术支持下,对外政策决策过程无论在决策客体、决策主体、决策方法还是决策结果方面都可以得到优化。但是大数据支持下的决策过程并不能完全颠覆和取代传统的决策过程,它本身还存在应用领域的局限、数据安全、数据失真以及个体... 在大数据技术支持下,对外政策决策过程无论在决策客体、决策主体、决策方法还是决策结果方面都可以得到优化。但是大数据支持下的决策过程并不能完全颠覆和取代传统的决策过程,它本身还存在应用领域的局限、数据安全、数据失真以及个体受到歧视这些问题。未来的大数据应用还需要努力应对这些问题。 展开更多
关键词 数据支持 对外政策决策 优化 局限
在线阅读 下载PDF
试论高校战略管理质量与数据支持
4
作者 郑仁淑 《现代情报》 CSSCI 2014年第8期123-125,共3页
高校战略管理是高校决策管理的深化形式,对数据支持的依赖性较强。数据是一切信息情报工作的基本要素。作为数据资源与工作为特征的图书情报和档案等信息管理部门,应在高校战略管理中发挥信息情报服务核心作用。其中包括提高对高校战略... 高校战略管理是高校决策管理的深化形式,对数据支持的依赖性较强。数据是一切信息情报工作的基本要素。作为数据资源与工作为特征的图书情报和档案等信息管理部门,应在高校战略管理中发挥信息情报服务核心作用。其中包括提高对高校战略管理数据支持内涵与信息情报服务的认识,完善针对高校战略管理的数据建设与服务,重视信息服务人员的决策服务素质等。 展开更多
关键词 高校决策管理 高校战略管理质量 数据支持 决策信息服务
在线阅读 下载PDF
基于直达路径信号残差和支持向量数据描述的非视距信号识别方法
5
作者 倪雪 曾海彧 杨文东 《电子与信息学报》 北大核心 2025年第6期1873-1884,共12页
非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特... 非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特征组合用于表征信号,基于此,为了使识别方法兼具样本获取成本低、环境适应能力好的特点,该文以构建在单个环境下采集单类信号数据作为分类模型的训练样本,在识别其它场景NLOS信号中有更好性能的方法为目的,设计了一种带DP信号残差训练的支持向量数据描述(SVDD)的识别方法。为了进一步提高识别准确率,将基于多层神经网络的深度特征提取技术引入SVDD中,设计了一种基于反向扩维的深度支持向量数据描述(DSVDD)的NLOS信号识别方法。实验结果表明:带DP信号残差训练的DSVDD方法只需在单个场景采集单类信号样本,且在训练集和测试集采集自不同场景时实现了85%以上的准确率,较只使用典型波形特征训练的SVDD提升了10%以上。 展开更多
关键词 超宽带定位 非视距信号识别 直达路径信号残差 支持向量数据描述 深度支持向量数据描述
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
6
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 二次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
7
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
在线阅读 下载PDF
基于支持向量数据描述的机械故障诊断研究 被引量:56
8
作者 李凌均 张周锁 何正嘉 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第9期910-913,共4页
为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目... 为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目标样本.将这种方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态,且不需要对原始数据进行特征提取.实验结果表明,支持向量数据描述法与传统的神经网络方法相比,具有较好的分类能力和较高的计算效率. 展开更多
关键词 支持向量数据描述 单值分类 故障诊断
在线阅读 下载PDF
支持向量数据描述用于机械设备状态评估研究 被引量:22
9
作者 李凌均 韩捷 +2 位作者 郝伟 董辛 何正嘉 《机械科学与技术》 CSCD 北大核心 2005年第12期1426-1429,共4页
本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从... 本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从而为设备管理和预知维修提供科学的决策依据。将该方法应用于某炼油厂关键设备的运行状态评估中,及时、正确地评价出设备状态异常,为成功诊断出螺栓裂纹的早期故障提供帮助。 展开更多
关键词 支持向量数据描述 单值分类 状态监测 故障诊断
在线阅读 下载PDF
基于EMD和支持向量数据描述的故障智能诊断 被引量:13
10
作者 李强 王太勇 +1 位作者 王正英 黄毅 《中国机械工程》 EI CAS CSCD 北大核心 2008年第22期2718-2721,共4页
针对数据维数过高导致的支持向量数据描述的分类结果不理想的问题,提出了一种基于经验模式分解特征提取和支持向量数据描述的故障智能诊断方法,将提取实测信号经经验模式分解后的各基本模式分量的能量作为信号特征,进行支持向量数据描... 针对数据维数过高导致的支持向量数据描述的分类结果不理想的问题,提出了一种基于经验模式分解特征提取和支持向量数据描述的故障智能诊断方法,将提取实测信号经经验模式分解后的各基本模式分量的能量作为信号特征,进行支持向量数据描述分类器的训练和分类。滚动轴承故障智能诊断实例表明,该方法可以有效提取信号的故障特征,降低数据维数,提高单值分类在故障智能诊断中的准确性。 展开更多
关键词 支持向量数据描述 经验模式分解 单值分类 故障诊断
在线阅读 下载PDF
基于主元分析的支持向量数据描述机械故障诊断 被引量:18
11
作者 潘明清 周晓军 +1 位作者 吴瑞明 雷良育 《传感技术学报》 EI CAS CSCD 北大核心 2006年第1期128-131,共4页
针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据... 针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据前处理,提取振动信号的统计特征值,得到的主元特征指标输入到SVDD分类器进行训练和测试。试验结果表明,PCA对正常和故障样本有较大的区分度,SVDD分类器能很好的分辨出轴承正常和故障状态,并且对未知故障有良好的识别能力。 展开更多
关键词 故障诊断 特征提取 主元分析 支持向量数据描述 轴承
在线阅读 下载PDF
基于数据格式支持机制的自动化渗透测试框架 被引量:3
12
作者 闻观行 张园超 张玉清 《中国科学院研究生院学报》 CAS CSCD 北大核心 2011年第5期676-683,共8页
Backtrack4是功能最全面的一款测试平台,但由于数据交换处理机制的缺失使得它难以胜任高效的测试需求.设计了相应的数据格式支持机制,并依此开发了一个渗透测试框架(PTF).该框架会自动使用有关的渗透测试工具进行信息探测、漏洞评估、... Backtrack4是功能最全面的一款测试平台,但由于数据交换处理机制的缺失使得它难以胜任高效的测试需求.设计了相应的数据格式支持机制,并依此开发了一个渗透测试框架(PTF).该框架会自动使用有关的渗透测试工具进行信息探测、漏洞评估、报告生成.真实网络环境中的实验验证了PTF能高效完成自动化渗透测试,进而大幅提升了使用Backtrack4进行渗透测试的有效性. 展开更多
关键词 网络渗透测试 Backtrack4 自动化 数据格式支持 PDFL
在线阅读 下载PDF
基于支持向量数据描述的局部放电类型识别 被引量:46
13
作者 唐炬 林俊亦 +1 位作者 卓然 陶加贵 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1046-1053,共8页
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法... 电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。 展开更多
关键词 局部放电 支持向量机 SVM 支持向量数据描述 SVDD 拒识 模式识别
在线阅读 下载PDF
基于小波包分解和支持向量数据描述的故障诊断方法 被引量:14
14
作者 李自国 郝伟 李凌均 《机械强度》 EI CAS CSCD 北大核心 2007年第3期365-369,共5页
支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波... 支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波包分解特征提取和SVDD的故障诊断方法,用小波包分解技术提取信号各频带的能量作为信号特征,用SVDD方法进行分类。对滚动轴承故障诊断的仿真实验结果显示,该方法可有效处理复杂机械振动信号,提高故障诊断的准确性。 展开更多
关键词 支持向量数据描述 故障诊断 小波包分解
在线阅读 下载PDF
基于加权支持向量数据描述的遥感图像病害松树识别 被引量:28
15
作者 胡根生 张学敏 +1 位作者 梁栋 黄林生 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期258-263,287,共7页
利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相... 利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相应像素点的颜色特征,再通过提取加窗图像块的灰度共生矩阵得到中心像素点的纹理特征,然后利用权重系数为每类样本分别作加权支持向量数据描述,实现松树状态的多输出分类识别,其中权重系数是通过建立关于训练样本中心距离的权重函数所确定。与传统的人工、航空和卫星遥感识别方法不同,利用无人机平台和双光谱相机获取遥感图像,具有可操作性强、费用低廉等优势。试验结果表明,相比传统的支持向量机和支持向量数据描述算法,改进的加权支持向量数据描述多分类算法更能准确地进行病害松树识别。 展开更多
关键词 松材线虫病害 遥感图像 状态识别 加权支持向量数据描述 多分类
在线阅读 下载PDF
基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究 被引量:25
16
作者 付文龙 周建中 +3 位作者 李超顺 肖汉 肖剑 朱文龙 《中国电机工程学报》 EI CSCD 北大核心 2014年第32期5788-5795,共8页
水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用... 水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用核变换将故障样本映射到高维特征空间,并采用SVDD提取不平衡故障样本域的边界支持向量样本,构建基于相对距离模糊阈值和KNN的决策规则,最终在此基础上建立机组故障诊断模型。用该模型对经过不平衡处理的国际标准测试数据样本进行测试实验,并与支持向量机(support vector machine,SVM)及目前应用较多的SVDD模型的分类结果进行对比,结果表明该模型可有效解决不平衡样本分类倾斜性问题。最后,将模型用于某水电厂机组振动故障诊断,取得了较高的诊断精度,证明了该方法的有效性。 展开更多
关键词 支持向量数据描述(SVDD) K近邻(KNN) 模糊阈值 不平衡 故障诊断
在线阅读 下载PDF
基于支持向量数据描述的非高斯过程故障重构与诊断 被引量:3
17
作者 张建明 葛志强 +2 位作者 谢磊 宋执环 王树青 《化工学报》 EI CAS CSCD 北大核心 2009年第1期168-171,共4页
提出一种基于支持向量描述(SVDD)的统计过程监控与故障重构及诊断算法,避免了PCA、PLS等传统统计过程监控方法假设过程数据服从高斯分布的不足。鲁棒故障重构算法通过迭代保证重构后的数据对应的SVDD监控统计量最小化。诊断算法根据故... 提出一种基于支持向量描述(SVDD)的统计过程监控与故障重构及诊断算法,避免了PCA、PLS等传统统计过程监控方法假设过程数据服从高斯分布的不足。鲁棒故障重构算法通过迭代保证重构后的数据对应的SVDD监控统计量最小化。诊断算法根据故障集中的不同故障重构后监控统计量是否恢复正常,确定实际发生的过程故障。CSTR过程的仿真研究表明了所提出方法的有效性。 展开更多
关键词 支持向量数据描述 故障诊断 统计监控
在线阅读 下载PDF
支持向量数据描述在西北暴雨预报中的应用试验 被引量:18
18
作者 燕东渭 孙田文 +2 位作者 杨艳 方建刚 刘志镜 《应用气象学报》 CSCD 北大核心 2007年第5期676-681,共6页
传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类... 传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类(多数类)的平庸的分类器。支持向量数据描述是从支持向量机(SVM)发展而来的基于核的机器学习方法,只使用一类样本就可以工作,适合于不平衡类别。以铜川暴雨预测作为试验对象,对SVM和支持向量数据描述(SVDD)进行了对比试验。试验结果表明对于这个不平衡类别问题SVDD具有优势。 展开更多
关键词 机器学习 支持向量数据描述(SVDD) 支持向量机(SVM) 暴雨预测
在线阅读 下载PDF
一种适于在线学习的增量支持向量数据描述方法 被引量:5
19
作者 冯国瑜 肖怀铁 +1 位作者 付强 任国磊 《信号处理》 CSCD 北大核心 2012年第2期186-192,共7页
本文针对支持向量数据描述(Support Vector Data Description,SVDD)中的在线学习问题,提出了一种增量支持向量数据描述(Incremental Support Vector Data Description,ISVDD)方法。首先,理论明确了增量学习机理在SVDD中的可行性,并深入... 本文针对支持向量数据描述(Support Vector Data Description,SVDD)中的在线学习问题,提出了一种增量支持向量数据描述(Incremental Support Vector Data Description,ISVDD)方法。首先,理论明确了增量学习机理在SVDD中的可行性,并深入分析了在线新增样本与已有样本集合的集合划分问题;同时从理论上给出了ISVDD中样本系数变化的依据,推导了ISVDD的理论过程。其次,为了提高理论完备性与应用可靠性,在六种条件下实现了样本属性之间的迁移,获得各个样本系数的变化量。ISVDD方法不仅继承了标准SVDD的优点,能够获得和标准SVDD同样的分类性能,并且显著减少了在线增量样本的训练时间,缓解了数据优化中对内存量的巨大需求。实验结果证明了本文方法的有效性和正确性。 展开更多
关键词 支持向量数据描述 增量学习 二次规划 样本迁移
在线阅读 下载PDF
结合邻域聚类分割的高光谱图像异常检测支持向量数据描述方法 被引量:6
20
作者 谌德荣 张立燕 +1 位作者 陶鹏 曹旭平 《宇航学报》 EI CAS CSCD 北大核心 2007年第3期767-771,共5页
支持向量数据描述方法在高光谱图像小异常目标检测中具有较好的检测性能,但是待检异常的几何形状受到约束和背景的选择具有盲目性影响检测效果,且检测需要对整幅图像进行遍历导致计算量大。提出邻域聚类分割和支持向量数据描述相结合的... 支持向量数据描述方法在高光谱图像小异常目标检测中具有较好的检测性能,但是待检异常的几何形状受到约束和背景的选择具有盲目性影响检测效果,且检测需要对整幅图像进行遍历导致计算量大。提出邻域聚类分割和支持向量数据描述相结合的异常检测方法,首先利用邻域聚类方法分割图像,将几何尺寸小的分割块作为潜在异常目标;其次选择与潜在异常的形状和大小相适应的背景窗进行背景像元收集;最后采用SVDD方法从潜在异常中快速且准确地检测出异常目标。对HYMAP图像的实验结果表明,该算法提高了复杂地物背景下异常的检测性能,降低了SVDD用于高光谱图像异常检测的计算量。 展开更多
关键词 高光谱图像 异常检测 支持向量数据描述 邻域聚类分割
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部