由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个...由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个目标而设计网络的。提出一种基于深度支持向量数据描述(Deep Support Vector Data Description, DSVDD)的方法,通过学习一个深度神经网络,使得输入的正常样本空间能够映射到最小超球面。通过DSVDD,不仅能找到最小尺寸的数据超球面以建立SVDD,而且可以学习有用的数据特征表示以及正常模型。在测试时,映射在超球面内的样本被判别为正常,而映射在超球面外的样例判别为异常。提出的方法在CUHK Avenue和ShanghaiTech Campus数据集上分别取得了87.4%和74.5%的帧级AUC,检测结果优于现有的最新方法。展开更多
文摘由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个目标而设计网络的。提出一种基于深度支持向量数据描述(Deep Support Vector Data Description, DSVDD)的方法,通过学习一个深度神经网络,使得输入的正常样本空间能够映射到最小超球面。通过DSVDD,不仅能找到最小尺寸的数据超球面以建立SVDD,而且可以学习有用的数据特征表示以及正常模型。在测试时,映射在超球面内的样本被判别为正常,而映射在超球面外的样例判别为异常。提出的方法在CUHK Avenue和ShanghaiTech Campus数据集上分别取得了87.4%和74.5%的帧级AUC,检测结果优于现有的最新方法。