为实现车载空调制冷系统故障诊断功能,快速判断空调制冷系统可能出现的故障类型,文章建立车载空调制冷系统一维仿真模型,并以压缩机进出口温度、压力等参数为特征参数,冷凝器风量降低、制冷剂泄漏等故障为输出目标结果,构建车载空调制...为实现车载空调制冷系统故障诊断功能,快速判断空调制冷系统可能出现的故障类型,文章建立车载空调制冷系统一维仿真模型,并以压缩机进出口温度、压力等参数为特征参数,冷凝器风量降低、制冷剂泄漏等故障为输出目标结果,构建车载空调制冷系统的反向传播(back-propagation,BP)神经网络故障诊断模型和决策树故障诊断模型。研究结果表明:当冷凝器风量降低时,压缩机排气温度与排气压力上升,空调系统的制冷量和性能系数(coefficient of performance,COP)下降。通过对比2种不同诊断策略的仿真测试结果发现,采用BP神经网络进行车载空调制冷系统故障诊断的准确率可以达到92.5%。展开更多
文摘深度学习近年来在故障诊断领域受到广泛应用,但基于深度学习的故障诊断模型缺乏工程上的物理解释性,难以保证其故障诊断结果的稳定性。以轴承为例,建立了以小波时频图像为故障诊断依据的卷积神经网络模型(convolutional neural network,CNN),提出了一种基于梯度加权类激活热力图(gradient-weighted class activation map,Grad-CAM)的网络模型鲁棒性分析方法,并利用美国凯斯西储大学(Case Western Reserve University,CWRU)轴承数据集进行验证。首先,将故障直径轴承数据以不同方式混合并训练大、小多个模型。其次,利用Grad-CAM方法,建立时频区域与故障模式之间的联系。最后,利用其他工况下的轴承故障数据,以及含噪数据进行测试,并根据结果结合模型最注重的时频区域进行分析。结果表明,基于深度学习的轴承故障诊断模型在参数较少时更加注重低频区域,并能使其具有更好的鲁棒性。
文摘为实现车载空调制冷系统故障诊断功能,快速判断空调制冷系统可能出现的故障类型,文章建立车载空调制冷系统一维仿真模型,并以压缩机进出口温度、压力等参数为特征参数,冷凝器风量降低、制冷剂泄漏等故障为输出目标结果,构建车载空调制冷系统的反向传播(back-propagation,BP)神经网络故障诊断模型和决策树故障诊断模型。研究结果表明:当冷凝器风量降低时,压缩机排气温度与排气压力上升,空调系统的制冷量和性能系数(coefficient of performance,COP)下降。通过对比2种不同诊断策略的仿真测试结果发现,采用BP神经网络进行车载空调制冷系统故障诊断的准确率可以达到92.5%。