期刊文献+
共找到2,250篇文章
< 1 2 113 >
每页显示 20 50 100
基于改进BP神经网络模型的苏帕河流域梯级电站水质综合评价 被引量:4
1
作者 王晓玲 段文泉 +2 位作者 黄宁 陈夺峰 杨键 《水利水电技术》 CSCD 北大核心 2005年第7期15-18,共4页
引入人工神经网络(ANN)理论,提出了水环境质量综合评价的改进BP神经网络模型,并编制了相应的程序。将模型运用于苏帕河流域梯级电站水质综合评价中,结果表明改进的BP神经网络模型通过变步长法和加入动量项的方法不仅可以减少训练的次数... 引入人工神经网络(ANN)理论,提出了水环境质量综合评价的改进BP神经网络模型,并编制了相应的程序。将模型运用于苏帕河流域梯级电站水质综合评价中,结果表明改进的BP神经网络模型通过变步长法和加入动量项的方法不仅可以减少训练的次数,避免网络训练陷入平坦区,还可以提高网络的精度,减小全局误差。与传统评价方法相比,本模型全面考虑多种因素,评价结果更为客观、合理;相应所开发的评价系统适应性强,通用性好,简单易用,具有优越性。 展开更多
关键词 水质综合评价 改进bp神经网络模型 苏帕河流域 梯级电站
在线阅读 下载PDF
改进BP神经网络模型在小康水利综合评价中的应用 被引量:11
2
作者 崔东文 金波 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期306-313,共8页
分析 BP 神经网络应用于小康水利综合评价中存在的几个关键性问题。利用层次分析法(AHP)从100余个水利统计指标中遴选出30个具有一定代表性的指标用于构建小康水利综合评价指标体系并给出相应的分级标准;采用 LM 算法弥补标准 BP 神... 分析 BP 神经网络应用于小康水利综合评价中存在的几个关键性问题。利用层次分析法(AHP)从100余个水利统计指标中遴选出30个具有一定代表性的指标用于构建小康水利综合评价指标体系并给出相应的分级标准;采用 LM 算法弥补标准 BP 神经网络在实际应用中存在收敛速度慢、易陷入局部极值等不足,建立了神经网络小康水利综合评价模型---LM-BP 模型;利用随机内插方法在小康水利综合评价分级标准阈值间生成训练样本和检验样本;提出网络拟合度的概念;选取网络拟合度、平均相对误差等5个统计指标用于评价模型性能。在模型达到预期的评价精度和泛化能力后,将其用于文山州小康水利综合评价,并构建传统 BP 模型、RBF 模型作为对比模型。结果表明:(a)无论是训练样本还是检验样本,LM-BP 模型的评价精度均高于传统 BP 神经网络模型、RBF 神经网络模型近一个数量级,表明 LM-BP 模型具有较高的评价精度和泛化能力,可用于文山州小康水利综合评价,模型收敛速度快、稳定性能好。(b)2010年文山州及各县级行政区小康水利综合评价为1~2级,处于起步-基本实现阶段;2020年预测评价为3级,全州基本实现小康水利。 展开更多
关键词 小康水利综合评价 改进bp神经网络模型 LM 算法 层次分析法 文山壮族苗族自治州
在线阅读 下载PDF
新安江模型和改进BP神经网络模型在闽江水文预报中的应用 被引量:32
3
作者 刘佩瑶 郝振纯 +2 位作者 王国庆 赵思远 王乐扬 《水资源与水工程学报》 CSCD 2017年第1期40-44,共5页
精确的水文预报是防洪减灾中重要的非工程措施,水文模型是开展水文预报最有力的工具。采用LM算法改进了的BP神经网络水文预报模型,以闽江富屯溪流域为例,进行了BP模型和新安江模型在日流量模拟预报中的应用比较。结果表明:两个模型总体... 精确的水文预报是防洪减灾中重要的非工程措施,水文模型是开展水文预报最有力的工具。采用LM算法改进了的BP神经网络水文预报模型,以闽江富屯溪流域为例,进行了BP模型和新安江模型在日流量模拟预报中的应用比较。结果表明:两个模型总体均达到水文预报的精度要求,水文预报合格率可达到90%以上;新安江模型在丰水年模拟效果较好,相比而言,BP神经网络模型的模拟精度更高一些;两个模型均可用于闽江流域的水文预报研究。 展开更多
关键词 新安江模型 参数率定 bp神经网络模型 LM算法 洪水预报
在线阅读 下载PDF
矿区开采沉陷预计的改进BP神经网络模型 被引量:11
4
作者 陈海燕 戎晓力 林阳 《金属矿山》 CAS 北大核心 2017年第4期119-122,共4页
为精确预计锦界矿某工作面开采沉陷,首先结合该工作面的地质资料、采掘工作平面图及孔柱状图,采用FLAC3D软件建立了该工作面开采沉陷仿真模型,得到工作面推进100、300、500、700 m时的开采沉陷数据;其次基于该类数据对BP神经网络预计模... 为精确预计锦界矿某工作面开采沉陷,首先结合该工作面的地质资料、采掘工作平面图及孔柱状图,采用FLAC3D软件建立了该工作面开采沉陷仿真模型,得到工作面推进100、300、500、700 m时的开采沉陷数据;其次基于该类数据对BP神经网络预计模型进行训练和验证,建立沉陷数据与工作面推进距离的非线性关联;然后用粒子群优化算法(Particle swarm optimization,PSO)对BP神经网络模型的结构参数和连接权值阈值进行优化,并引入遗传算法(Genetic algorithm,GA)中的自适应变异因子以一定概率初始化部分变量,以解决PSO算法易陷入局部最优解的问题,避免BP神经网络模型易陷入局部最小值、训练收敛速率低以及PSO算法易早熟收敛等问题。分别采用BP神经网络模型、PSO-BP神经网络模型以及所提模型进行试验对比,并引入偏差平方和(Sum of squares for total,SST)对各模型的预计精度进行评价,研究表明:在工作面分别推进100,300,500 m的情况下,BP神经网络模型的SST值分别为0.056,0.062,0.066,PSO-BP神经网络模型的SST值分别为0.049,0.054,0.048,所提模型的SST值分别为0.028,0.026,0.031,明显小于前两者,表明该模型有助于提高矿区开采沉陷预计精度,有一定的实用价值。 展开更多
关键词 开采沉陷 bp神经网络模型 粒子群优化算法 遗传算法 偏差平方和
在线阅读 下载PDF
智能监控中改进BP神经网络模型的应用研究
5
作者 刘伟 费仁元 《北京工业大学学报》 CAS CSCD 1996年第2期61-67,共7页
就神经网络对给定知识的表达、联想、记忆能力进行了研究,介绍了改进BP神经网络模型算法及其应用于智能监控领域应注意的问题,并对切削加工中的切屑状态进行了实例识别诊断,取得了令人满意的效果。
关键词 神经网络 改进bp模型 智能监控 诊断
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
6
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于Zerilli-Armstrong和BP神经网络的15CrMoG合金钢本构模型研究
7
作者 刘宏伟 王伟 +3 位作者 代学蕊 马世博 穆振凯 王宝雨 《塑性工程学报》 北大核心 2025年第7期175-183,共9页
采用Gleeble热模拟试验机,在应变速率5、10、15和20 s^(-1),温度1173.15、1273.15、1373.15和1473.15 K条件下对15CrMoG合金钢进行等温压缩试验。基于试验得到的真实应力和真实应变数据,分析15CrMoG钢的热变形行为,构建15CrMoG钢的Zeril... 采用Gleeble热模拟试验机,在应变速率5、10、15和20 s^(-1),温度1173.15、1273.15、1373.15和1473.15 K条件下对15CrMoG合金钢进行等温压缩试验。基于试验得到的真实应力和真实应变数据,分析15CrMoG钢的热变形行为,构建15CrMoG钢的Zerilli-Armstrong(Z-A)本构模型和BP神经网络模型,预测材料的流变应力。引入相关系数R和平均绝对相对误差e_(AARE)分析模型的精度,结果表明,Z-A本构模型的预测应力值与试验值的相关系数为0.9447,平均绝对相对误差为10.3%;采用应变的五阶多项式对模型的部分材料参数进行修正,得到修正的Z-A本构模型,修正模型的预测值与试验值的相关系数为0.9934,平均绝对相对误差为7.47%,模型精度得到明显提高。建立的BP神经网络模型的预测应力值与试验值的相关系数为0.9981,平均绝对相对误差为1.02%,具有更高的预测精度,能够更好地描述15CrMoG钢在高温下的热变形行为。 展开更多
关键词 Zerilli-Armstrong 本构模型 bp神经网络 15CrMoG合金钢 热变形行为
在线阅读 下载PDF
不同温湿度贮藏对澳洲坚果鲜果品质的影响及BP神经网络预测模型构建
8
作者 付镓榕 马尚玄 +6 位作者 杨悦雪 徐文婷 兰秀华 魏元苗 黄克昌 贺熙勇 郭刚军 《食品工业科技》 北大核心 2025年第13期314-326,共13页
为分析澳洲坚果鲜果在短期贮藏中的品质变化,本文探究贮藏温湿度(30℃-RH80%、35℃-RH80%、40℃-RH80%、30℃-RH90%、35℃-RH90%、40℃-RH90%)对鲜果果皮含水量、带壳果含水量、果仁含水量、青皮裂果率、霉果率、酸价、过氧化值、碘值... 为分析澳洲坚果鲜果在短期贮藏中的品质变化,本文探究贮藏温湿度(30℃-RH80%、35℃-RH80%、40℃-RH80%、30℃-RH90%、35℃-RH90%、40℃-RH90%)对鲜果果皮含水量、带壳果含水量、果仁含水量、青皮裂果率、霉果率、酸价、过氧化值、碘值、总酚含量、总糖含量的影响,并基于反向传播(Backpropagation,BP)神经网络构建澳洲坚果鲜果短期贮藏的品质预测模型,测试集评估模型的预测性能。结果表明,在短期贮藏中35℃-RH80%条件贮藏的水分损失最快,35℃贮藏的青皮裂果率增速显著高于30、40℃(P<0.05),30℃时果皮霉果率增速显著高于35、40℃(P<0.05)。在贮藏期间酸价、过氧化值均呈上升趋势,贮藏结束时35℃-RH90%条件贮藏的酸价最高,为15.57 mg/100 g,30℃-RH80%条件贮藏的过氧化值最高,为36.44μg/g;碘值、总酚含量呈先上升后下降的趋势,贮藏期间35℃-RH90%条件贮藏的碘值增幅最大为119.26 mg/g,贮藏结束40℃-RH80%条件贮藏的碘值最低为675.72 mg/g,贮藏结束35℃-RH80%、40℃-RH90%总酚含量均为0.88 mg/g,显著低于其他贮藏条件(P<0.05);总糖含量呈下降趋势,贮藏结束35℃-RH80%条件贮藏的总糖含量显著低于其他贮藏条件(P<0.05)。相关性分析表明预测模型的输入层与输出层具有较好的相关性,澳洲坚果鲜果短期贮藏的品质预测模型隐含层节点数为7,酸价、过氧化值、碘值、总酚含量、总糖含量训练集的相关系数分别为0.97952、0.98815、0.94869、0.94882、0.97109,预测精度良好。因此,神经网络预测模型可用于预测澳洲坚果鲜果在采后运输及贮藏过程中的品质变化,并为神经网络预测模型在澳洲坚果品质预测中的应用奠定基础。 展开更多
关键词 澳洲坚果 鲜果 贮藏品质 预测模型 反向传播(bp)神经网络
在线阅读 下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:3
9
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
在线阅读 下载PDF
基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究
10
作者 李培月 梁豪 +2 位作者 杨俊岩 田艳 寇晓梅 《西北地质》 北大核心 2025年第3期236-245,共10页
地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位... 地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位动态的主要因素,通过SPSS对影响地下水位动态的降水量和开采量两个主要因素进行相关性分析,并基于GM(1,1)灰度预测模型和BP神经网络模型对地下水位变动趋势进行了预测。结果表明:(1)2010~2016年,地下水位整体上呈下降趋势,2016~2020年间,得益于地下水压采和供水设施的不断优化完善,地下水位呈回升趋势。(2)降水和人为开采均对西安市地下水位变动具有显著影响;地下水位埋深是决定受降水影响程度的关键因素,其中河漫滩地区最为敏感,阶地次之,黄土塬区较弱。地下水开采量与地下水位埋深具有更强的相关性。这凸显了其在调控地下水位动态变化中的主导地位。(3)地下水位预测结果显示,随着地下水开采量呈现出逐年下降的趋势,研究区地下水整体处于波动上升趋势。本研究对西安市地下水动态的影响因素及预测趋势进行了研究,对地下水资源管理和可持续发展具有重要参考价值。 展开更多
关键词 地下水位动态 主导因素 回归分析 灰色模型 bp神经网络预测
在线阅读 下载PDF
基于BP神经网络的飞轮转子全系统模型
11
作者 何海婷 柳亦兵 《华北电力大学学报(自然科学版)》 北大核心 2025年第2期99-106,共8页
在前人的研究中,转子动力学模型和系统调度模型分属不同研究领域,缺乏完整的飞轮转子全系统模型,难以有效分析飞轮储能系统中复杂的电-磁-力耦合问题。为了解决这一问题,通过替代映射方法,使用有限元模型参数化计算结果训练BP神经网络,... 在前人的研究中,转子动力学模型和系统调度模型分属不同研究领域,缺乏完整的飞轮转子全系统模型,难以有效分析飞轮储能系统中复杂的电-磁-力耦合问题。为了解决这一问题,通过替代映射方法,使用有限元模型参数化计算结果训练BP神经网络,构造了AMB、PMSM和PMB模块,并与飞轮转子动力学模型、功率-电流-转速模块和PID控制器等组成一个完整的飞轮储能全系统模型。该模型成功应用于燃煤火电机组二次调频和风电输出平滑场景,可以同时计算飞轮储能系统的功率跟随和转子运动情况。仿真结果表明不同的转速起点,会改变转子的转动频率变化范围,从而影响转子振幅等安全参数。该模型具有接近实时的仿真速度。研究结果为飞轮储能系统的设计优化和运行控制提供了重要工具。 展开更多
关键词 飞轮转子 全系统模型 bp神经网络 有限元方法 替代映射
在线阅读 下载PDF
基于改进BP神经网络的船舶油耗预测方法研究
12
作者 吴泽颖 赵强 +1 位作者 胡智辉 王敬钰 《舰船科学技术》 北大核心 2025年第11期149-154,共6页
为精确预估船舶油耗,推动航运业向绿色低碳转型,提出一种基于改进BP神经网络的船舶油耗预测方法。通过对原始航行数据进行预处理,去除噪声、偏差和异常值;利用核主成分分析法将数据中的10个原始变量降维为5个主成分,减少数据维度;采用... 为精确预估船舶油耗,推动航运业向绿色低碳转型,提出一种基于改进BP神经网络的船舶油耗预测方法。通过对原始航行数据进行预处理,去除噪声、偏差和异常值;利用核主成分分析法将数据中的10个原始变量降维为5个主成分,减少数据维度;采用遗传算法优化BP神经网络,建立高精度的船舶油耗模型。以1艘液化石油天然气运输船为研究对象,实验结果表明,优化后的BP神经网络油耗模型在预测性能方面获得较大提升,训练集和验证集的均方根误差分别降低了0.1122和0.1068,决定系数提高1.58%。该研究成果能够为船舶节能减排提供可靠的决策支持。 展开更多
关键词 bp神经网络 核主成分分析 遗传算法 船舶油耗 预测模型
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
13
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进PSO算法 bp神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于BP神经网络的15Cr14Co12Mo5Ni2齿轮钢本构模型建立及热加工图研究
14
作者 朱鹏 冯玮 《塑性工程学报》 北大核心 2025年第8期177-186,共10页
为了建立15Cr14Co12Mo5Ni2钢本构模型,利用Gleeble-3500热模拟试验机在变形温度为860~1160℃,应变速率为0.01~5 s^(-1)下进行了单道次热压缩实验,得到了15Cr14Co12Mo5Ni2钢在不同工艺参数下的应力-应变曲线。基于应力-应变实验数据,通... 为了建立15Cr14Co12Mo5Ni2钢本构模型,利用Gleeble-3500热模拟试验机在变形温度为860~1160℃,应变速率为0.01~5 s^(-1)下进行了单道次热压缩实验,得到了15Cr14Co12Mo5Ni2钢在不同工艺参数下的应力-应变曲线。基于应力-应变实验数据,通过试凑法确定了层数为3×10×3×1(双隐含层)的BP神经网络本构关系预测模型,建立了不同变形条件下的三维功率耗散图、三维失稳图及热加工图。计算了基于应变补偿的Arrhenius模型和基于BP神经网络的本构模型的应力-应变预测值与实验值的误差,确定了齿轮钢最佳变形工艺条件。基于BP神经网络的本构模型和基于应变补偿的Arrhenius本构模型预测的流动应力均方误差分别为20.9415和109.2035,平均相对误差分别为0.0216和0.0501,确定的齿轮钢最佳成形温度和应变速率范围分别为1110~1160℃和0.01~0.33 s^(-1)。结果表明:基于BP神经网络建立的本构模型能更准确地预测15Cr14Co12Mo5Ni2钢的流动行为。 展开更多
关键词 15Cr14Co12Mo5Ni2钢 热压缩实验 bp神经网络 本构模型 热加工图
在线阅读 下载PDF
基于改进PSO-BP神经网络的土遗址锚固力智能化预测研究
15
作者 殷运童 马剑 +4 位作者 白镇滔 芦苇 毛筱霏 倪娜 李东波 《力学学报》 北大核心 2025年第4期867-882,共16页
古建筑“最小干预”原则严禁加固设计时大规模原位测试,导致锚固设计等往往具有较大经验性和随机性.近年来,人工智能的数据挖掘、高效精准等优势为古建筑保护提供了新的思路,如何协同好“最小干预”和加固设计科学化已成为古建筑保护智... 古建筑“最小干预”原则严禁加固设计时大规模原位测试,导致锚固设计等往往具有较大经验性和随机性.近年来,人工智能的数据挖掘、高效精准等优势为古建筑保护提供了新的思路,如何协同好“最小干预”和加固设计科学化已成为古建筑保护智能化的重要课题.为此,引入自适应惯性权重和非对称学习因子改进传统粒子群算法,进而优化BP(backpropagation)神经网络的初始权重和阈值,构建一种新型粒子群优化BP神经网络(improved particle swarm optimization-backpropagation,IPSO-BP)锚固力智能化预测模型.以碳纤维楠竹锚杆为例,综合原位和模型试验,考虑锚固长度、直径、倾斜角度、灌浆体强度、孔径和碳纤维缠绕间距等影响因素,建立锚固力样本数据.数据学习和预测结果表明,IPSO-BP模型具有更好的鲁棒性、效率和精度,与传统粒子群优化BP神经网络模型相比均方根误差与平均绝对误差分别下降了61.3%和31.9%.基于Spearman相关系数理论,进一步分析了锚固力对不同影响因素的灵敏性,结果表明,锚固长度是影响锚固力的关键因素,而钻孔体积将直接影响锚固施工时对土遗址的损伤程度.进而以锚固长度和孔径作为设计变量,通过单目标和多目标优化分析,获得了锚固力最大化和钻孔体积最小化的最优设计方案.研究成果可为土遗址加固保护的智能化发展提供技术支撑和理论参考. 展开更多
关键词 土遗址 锚固力 粒子群优化 bp 神经网络 预测模型
在线阅读 下载PDF
基于BP神经网络的用户感性评价模型构建及应用
16
作者 董圣泽 王肖烨 +2 位作者 王若羽 杨景浩 郭凌志 《包装工程》 北大核心 2025年第2期82-90,共9页
目的 充分利用网络购物平台用户评论,寻找形态因子最佳组合以指导产品造型设计,解决部分产品难以契合用户感性需求的问题。方法 利用网络爬虫抓取某网络购物平台的用户评论并利用TF-IDF算法将其量化;使用主成分分析法,选取感性评价指标... 目的 充分利用网络购物平台用户评论,寻找形态因子最佳组合以指导产品造型设计,解决部分产品难以契合用户感性需求的问题。方法 利用网络爬虫抓取某网络购物平台的用户评论并利用TF-IDF算法将其量化;使用主成分分析法,选取感性评价指标,借助形态分析法将目标产品分解为多个主要结构;运用BP神经网络构建用户感性评价模型,遍历所有形态因子组合以确定最优搭配。结果 以电饭煲为例,根据所构建模型可预测各评价指标最高的形态因子组合,该模型均方误差为0.0049,决定系数为0.9287,模型精度符合要求,利用问卷调查法进一步证明了预测结果有参考价值。结论 基于BP神经网络构建的模型拥有快速寻找最佳形态因子组合的能力,利用网络购物平台用户评论作为训练样本能够解决人工搜集或问卷调查获取样本时间长、成本高、市场响应慢、样本分布不均匀等问题。用户感性评价模型预测结果对设计师精准满足用户需求有重要的指导意义。 展开更多
关键词 用户感性评价模型 bp神经网络 感性意象评价 电饭煲
在线阅读 下载PDF
基于BP神经网络的易贡藏布河流含沙量预测模型研究
17
作者 武泽宇 宁家贤 高朋辉 《水电能源科学》 北大核心 2025年第7期78-80,56,共4页
准确预测河流泥沙含量及其变化趋势,对于河流管理、水资源利用及生态环境保护具有重要意义。为此,引入BP神经网络,基于易贡藏布水文站2013~2022年实测数据,构建了基于BP神经网络的含沙量预测模型,利用该模型预测了易贡藏布河流含沙量,... 准确预测河流泥沙含量及其变化趋势,对于河流管理、水资源利用及生态环境保护具有重要意义。为此,引入BP神经网络,基于易贡藏布水文站2013~2022年实测数据,构建了基于BP神经网络的含沙量预测模型,利用该模型预测了易贡藏布河流含沙量,并选取决定系数、平均绝对值误差、平均偏差、均方根误差评价模型的性能。结果表明,所提模型预测精度极高,R^(2)值远超0.98,误差指标均趋近于零,充分验证了该模型的有效性与准确性,为该流域未来含沙量预测工作提供了参考依据和科学指导。 展开更多
关键词 bp神经网络模型 易贡藏布河 含沙量预测 机器学习
在线阅读 下载PDF
BP神经网络模型对鞍山中小河流水质的评价
18
作者 赵鑫 《水土保持应用技术》 2025年第3期52-53,共2页
采用BP神经网络模型对鞍山市中小河流的水质进行预测评价。输入层选取21个指标参数作为输入信息,训练集为20条河流最具代表性监测断面2016-2020年每年的监测数据年平均值,共计100组,测试集为2022年各个监测断面数据的年平均值。用20组... 采用BP神经网络模型对鞍山市中小河流的水质进行预测评价。输入层选取21个指标参数作为输入信息,训练集为20条河流最具代表性监测断面2016-2020年每年的监测数据年平均值,共计100组,测试集为2022年各个监测断面数据的年平均值。用20组测试集去验证与真实值之间的拟合程度,得出R 2=0.92502,证明拟合度高,该模型可以直接用于水质的预测评价。 展开更多
关键词 bp神经网络模型 水质预测评价 水质指标
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
19
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于神经网络代理模型的门式墩优化方法及软件研发
20
作者 柏华军 《铁道标准设计》 北大核心 2025年第3期106-112,共7页
针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化... 针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化数学模型;然后,基于有限元法构建门式墩训练样本集,采用拉丁超立方开展试验设计,建立BPNN神经网络代理模型;最后,采用NSGAII遗传优化算法对BPNN神经网络代理模型进行搜索,实现门式墩最优结构尺寸和钢束线形的搜索推荐。依托某门式墩结构设计,开展算法有效性和效率验证,结果表明,案例的优化时间由有限元法的45 h缩短至智能优化算法的15 min,优化算法在保证预测精度的同时提高优化效率180倍。 展开更多
关键词 铁路桥梁 门式墩 结构优化 bp神经网络 代理模型 多目标优化 NSGAII算法 拉丁超立方设计
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部