期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
改进鲸鱼算法优化支持向量机实现乳腺癌预测 被引量:1
1
作者 高涛 袁德成 《现代电子技术》 北大核心 2024年第11期156-160,共5页
为了更好地通过人体肥胖的相关指数预测乳腺癌的存在,以抵抗素、葡萄糖、年龄和身体质量指数作为数据特征构造预测模型,通过研究支持向量机(SVM)的参数对模型的性能影响,提出一种基于自适应机制策略改进的鲸鱼算法,即参数自适应鲸鱼优... 为了更好地通过人体肥胖的相关指数预测乳腺癌的存在,以抵抗素、葡萄糖、年龄和身体质量指数作为数据特征构造预测模型,通过研究支持向量机(SVM)的参数对模型的性能影响,提出一种基于自适应机制策略改进的鲸鱼算法,即参数自适应鲸鱼优化算法(PAWOA)用来寻找最优参数。采用Tent映射对种群位置初始化,引入自适应参数p^(*)代替随机阈值加速收敛速度,针对给定的目标函数对每个搜索个体进行求解,计算适应度后找到全局最优解,增强种群的全局寻优性能。实验结果表明,优化后的模型精确度提升12.44%,召回率提升13.57%,F_(1)评分提升13.14%。可见,该预测模型拥有更好的效果可以用于辅助判断乳腺癌。 展开更多
关键词 鲸鱼优化算法 支持向量 自适应参数 数据预处理 乳腺癌细胞分类 TENT映射
在线阅读 下载PDF
基于支持向量机-改进型鱼群算法的CO_2优化调控模型 被引量:11
2
作者 辛萍萍 张珍 +3 位作者 王智永 胡瑾 邵志成 张海辉 《农业机械学报》 EI CAS CSCD 北大核心 2017年第6期249-256,共8页
提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为... 提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为目标函数,采用改进型鱼群算法实现二氧化碳饱和点寻优,获得不同温度、光子通量密度组合条件的CO_2饱和点,进而构建CO_2优化调控模型。异校验结果表明,CO_2饱和点实测值与预测值相关系数为0.965,最大相对误差3.056%。提出的CO_2优化调控模型可动态预测CO_2饱和点,为实现设施CO_2精准调控提供了可行思路。 展开更多
关键词 CO2优化调控模型 支持向量算法 改进型鱼群算法 光合速率 CO2饱和点
在线阅读 下载PDF
基于改进鲸鱼算法优化支持向量机的故障诊断的研究与应用 被引量:19
3
作者 李慧 徐海亮 +1 位作者 王浩 李佳男 《科学技术与工程》 北大核心 2022年第13期5284-5290,共7页
故障诊断在工业生产过程中具有很重要的作用,尤其是对于要求比较高的分子蒸馏来说,微小的故障都会造成其提纯率,因此提出一种基于改进鲸鱼算法优化支持向量机的故障分类方法(improved whale optimization algorithm-support vector mach... 故障诊断在工业生产过程中具有很重要的作用,尤其是对于要求比较高的分子蒸馏来说,微小的故障都会造成其提纯率,因此提出一种基于改进鲸鱼算法优化支持向量机的故障分类方法(improved whale optimization algorithm-support vector machine,IWOA-SVM),加入反向学习策略和对数权重因子到普通鲸鱼算法中。首先,用反向学习策略(opposition-based learning,OBL)代替随机初始种群,用反向学习策略选取出反向种群,对种群进行择优选择,一方面OBL能够高效地提高群智能算法的全局搜索能力,另一方面提高鲸鱼算法在重复迭代中的多样性,使其跳出局部最优解;其次,引入自适应权重因子并将其加入到鲸鱼优化算法中,利用权重因子的动态变化,很大程度上增强了全局搜索能力;最后,采用改进之后的鲸鱼算法对SVM的参数进行寻优,并利用优化之后的支持向量机对刮膜蒸发过程获得的故障数据进行诊断识别,将IWOA-SVM的结果与其他3种做对比。结果表明,IWOA-SVM算法分类准确率提升了2%,且其准确率保持在98%以上,在分类结果的准确性以及算法的鲁棒性方面优于其他算法。 展开更多
关键词 鲸鱼优化算法(WOA) 支持向量(SVM) 故障分类 反向学习(OBL) 自适应权重因子
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
4
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量
在线阅读 下载PDF
基于改进型鲸鱼优化算法和最小二乘支持向量机的炼钢终点预测模型研究 被引量:33
5
作者 郑威迪 李志刚 +1 位作者 贾涵中 高闯 《电子学报》 EI CAS CSCD 北大核心 2019年第3期700-706,共7页
终点碳含量是决定钢质量的关键因素,是转炉炼钢过程中需要控制的核心变量之一.本文建立了一种基于莱维飞行的鲸鱼优化算法(Levy Whale Optimization Algorithm,LWOA)和最小二乘向量机(Least Squares Support Vector Machine,LSSVM)的钢... 终点碳含量是决定钢质量的关键因素,是转炉炼钢过程中需要控制的核心变量之一.本文建立了一种基于莱维飞行的鲸鱼优化算法(Levy Whale Optimization Algorithm,LWOA)和最小二乘向量机(Least Squares Support Vector Machine,LSSVM)的钢水终点碳含量综合预测模型.通过莱维飞行代替了传统鲸鱼优化算法(Whale Optimization Algorithm,WOA)参数的随机选择,优化了鲸鱼算法中跳出局部最优的能力;借助改变鲸鱼算法的系数向量收敛方式明显提高了鲸鱼优化算法的泛化能力、预测精度和收敛速度.数据仿真结果表明,所提出的LWOA-LSSVM预测模型,不仅能够克服局部寻优获取全局最优解,而且具有快速的收敛速度和更高的预测精度,得出预测结果的均方根误差、平均绝对误差和平均绝对百分比误差与遗传算法BP神经网络、遗传算法最小二乘支持向量机和传统鲸鱼算法最小二乘支持向量机相比均有着明显提高.同时,通过调整目标命中率和训练输入样本量验证了预测模型具有更好的鲁棒性. 展开更多
关键词 炼钢 碳含量 鲸鱼优化算法 最小二乘法 支持向量 莱维飞行
在线阅读 下载PDF
改进鲸鱼算法优化混合核支持向量机在径流预测中的应用 被引量:8
6
作者 周有荣 王凯 《中国农村水利水电》 北大核心 2020年第7期50-53,共4页
构建基于多项式核与高斯核相融合的混合核支持向量机(MSVM),利用拉普拉斯交叉算子(LX)改进的鲸鱼优化算法(LXWOA)优化MSVM关键参数和混合权重系数,提出LXWOA-MSVM径流预测模型,并构建高斯核LXWOA-GSVM、多项式核LXWOA-PSVM及LXWOA-BP作... 构建基于多项式核与高斯核相融合的混合核支持向量机(MSVM),利用拉普拉斯交叉算子(LX)改进的鲸鱼优化算法(LXWOA)优化MSVM关键参数和混合权重系数,提出LXWOA-MSVM径流预测模型,并构建高斯核LXWOA-GSVM、多项式核LXWOA-PSVM及LXWOA-BP作对比预测模型,以云南省清水江水文站枯水期1-4月月径流预测为例进行实例研究,利用实例前24年和后10年资料对各模型进行训练和预测。结果表明,LXWOA-MSVM模型对实例1-4月月径流预测的平均相对误差绝对值分别为4.09%、3.32%、3.51%和5.64%,预测精度均高于LXWOA-GSVM等3种模型,具有较好的预测精度和泛化能力,可为相关径流预测研究提供参考。 展开更多
关键词 径流预测 鲸鱼优化算法 拉普拉斯交叉算子 混合核函数 支持向量 参数优化
在线阅读 下载PDF
最小二乘支持向量机联合改进果蝇优化算法的CFB锅炉燃烧优化 被引量:13
7
作者 张文广 张越 +2 位作者 孙亚洲 高明明 李宝贵 《热力发电》 CAS 北大核心 2016年第7期44-49,共6页
针对电厂循环流化床(CFB)锅炉降低污染物排放和提高锅炉燃烧效率的问题,本文首先应用最小二乘支持向量机(LS-SVM)建立了锅炉效率、NO_x和SO_2排放特性的软测量模型,并对比了LS-SVM和BP神经网络模型的性能;然后基于LS-SVM建立的模型,提出... 针对电厂循环流化床(CFB)锅炉降低污染物排放和提高锅炉燃烧效率的问题,本文首先应用最小二乘支持向量机(LS-SVM)建立了锅炉效率、NO_x和SO_2排放特性的软测量模型,并对比了LS-SVM和BP神经网络模型的性能;然后基于LS-SVM建立的模型,提出了3种优化策略,采用改进果蝇优化算法(MFOA)在一定范围内对CFB锅炉运行工况的可调参数进行优化。结果表明:LS-SVM模型与BP神经网络模型相比,训练时间较短,预测精度较高,泛化能力较强;CFB锅炉效率最多提高了0.61%,NO_x和SO_2排放质量浓度最多降低了7.88%和18.13%。 展开更多
关键词 CFB 锅炉效率 NOx SO2 最小二乘支持向量 改进果蝇优化算法 燃烧优化
在线阅读 下载PDF
支持向量机改进序列最小优化学习算法 被引量:10
8
作者 朱齐丹 张智 邢卓异 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第2期183-188,共6页
为提高支持向量机序列最小优化学习算法的学习性能,提出了一种支持向量机改进序列最小优化学习算法,对传统SMO学习方法进行了多方面改进,从优化变量的选择和2个变量的优化方法分别提出具体可行的改进方法.改进后的SMO学习算法提高了学... 为提高支持向量机序列最小优化学习算法的学习性能,提出了一种支持向量机改进序列最小优化学习算法,对传统SMO学习方法进行了多方面改进,从优化变量的选择和2个变量的优化方法分别提出具体可行的改进方法.改进后的SMO学习算法提高了学习速度,加快了网络收敛速度.基于改进SMO算法的仿真结果验证了改进SMO算法的有效性和优越性,并通过仿真,与原始算法进行了比较,显示了改进SMO算法的快速性. 展开更多
关键词 支持向量 序列最小优化 改进学习算法 回归问题
在线阅读 下载PDF
基于改进果蝇优化算法优化支持向量机的故障诊断 被引量:17
9
作者 黄晓璐 周湘贞 《机械强度》 CAS CSCD 北大核心 2019年第3期568-574,共7页
为提高支持向量机(SVM)在机械故障诊断中的精度,对果蝇优化算法(FOA)进行改进,提取了一种基于改进果蝇优化算法优化SVM的故障诊断方法。改进果蝇优化算法(IFOA)中果蝇个体在进行位置更新时,融入了历史位置信息,在增加果蝇种群多样性的同... 为提高支持向量机(SVM)在机械故障诊断中的精度,对果蝇优化算法(FOA)进行改进,提取了一种基于改进果蝇优化算法优化SVM的故障诊断方法。改进果蝇优化算法(IFOA)中果蝇个体在进行位置更新时,融入了历史位置信息,在增加果蝇种群多样性的同时,又使算法具有了跳出局部最优的能力,进而可以获得更优的SVM参数以增强SVM分类性能。齿轮故障诊断实例验证了IFOA算法提升了SVM的识别效果,相比于其他一些方法更有优势。 展开更多
关键词 改进果蝇优化算法 参数优化 支持向量 故障诊断
在线阅读 下载PDF
基于改进鲸鱼算法优化SVM的软件缺陷检测方法 被引量:1
10
作者 杜晔 田晓清 +1 位作者 李昂 黎妹红 《信息网络安全》 CSCD 北大核心 2024年第8期1152-1162,共11页
为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞... 为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞行策略优化鲸鱼觅食阶段,最大限度地实现搜索代理多样化,并利用混合变异扰动算子提高WOA的全局寻优能力;然后采用改进的鲸鱼算法LFWOA对SVM的惩罚因子和核函数参数进行优化,在获得最优参数的同时可有效检测软件缺陷。仿真实验表明,在6个基准测试函数中,LFWOA展现出更高的寻优速度和全局搜索能力;在8个公开软件缺陷数据集上进行测试显示,LFWOA-SVM方法能够有效提高分类性能和预测精度。 展开更多
关键词 软件缺陷检测 Levy飞行 鲸鱼优化算法 变异扰动 支持向量
在线阅读 下载PDF
采用改进果蝇优化算法的最小二乘支持向量机参数优化方法 被引量:30
11
作者 司刚全 李水旺 +1 位作者 石建全 郭璋 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第6期14-19,共6页
针对最小二乘支持向量机建模中超参数选择盲目的问题,提出了一种新的改进果蝇优化算法用于超参数寻优。该算法在果蝇优化算法的基础上,通过判断当代寻优所获得的最优值与前代最优值的关系来选择不同的步长计算公式,以实现搜索步长的自... 针对最小二乘支持向量机建模中超参数选择盲目的问题,提出了一种新的改进果蝇优化算法用于超参数寻优。该算法在果蝇优化算法的基础上,通过判断当代寻优所获得的最优值与前代最优值的关系来选择不同的步长计算公式,以实现搜索步长的自适应更新,使其不仅具有果蝇优化算法调整参数少、计算速度快的优越性,而且提高了果蝇优化算法的寻优精度和全局寻优能力。仿真结果和磨机负荷应用表明,与基于网格搜索法、粒子群优化算法以及未改进的果蝇优化算法所建立的预测模型相比,基于改进的果蝇优化算法所建立的预测模型可以显著提高磨机负荷的预测精度,能更准确地描述出磨机负荷的变化规律。 展开更多
关键词 改进果蝇优化算法(IFOA) 最小二乘支持向量(LSSVM) 负荷
在线阅读 下载PDF
改进和声搜索算法优化支持向量机的柴油机故障诊断研究 被引量:2
12
作者 沈绍辉 姚竹亭 《组合机床与自动化加工技术》 北大核心 2016年第4期83-88,共6页
针对基本和声搜索算法在优化支持向量机参数时,其局部搜索能力不足且后期收敛速度比较慢的缺点,提出利用改进和声搜索算法对支持向量机相关参数进行选择优化(IHS-SVM)的方法。在这一方法中,将原算法中控制参数—记忆库取值概率(HMCR)、... 针对基本和声搜索算法在优化支持向量机参数时,其局部搜索能力不足且后期收敛速度比较慢的缺点,提出利用改进和声搜索算法对支持向量机相关参数进行选择优化(IHS-SVM)的方法。在这一方法中,将原算法中控制参数—记忆库取值概率(HMCR)、微调概率(PAR)和调节宽度(bw)由静态值改进为随迭代次数的不同而进行动态变化。通过对UCI中的2个数据集进行分类正确率测试,并与未优化的支持向量机(SVM)和基本和声算法优化的支持向量机(HS-SVM)测试结果对比,证明了该改进方法的优越性。最后,将其用于柴油机故障诊断,并将分类正确率与未优化SVM和HSSVM分类结果进行比较,进一步说明改进和声搜索算法优化的支持向量机(IHS-SVM)能获得更高的分类结果正确率,即证明了该改进方法的实用性。 展开更多
关键词 改进和声搜索算法 支持向量 参数优化 柴油故障诊断
在线阅读 下载PDF
改进灰狼算法优化支持向量机在风力机齿轮箱故障诊断中的应用 被引量:10
13
作者 胡璇 李春 +1 位作者 叶柯华 张万福 《机械强度》 CAS CSCD 北大核心 2021年第6期1289-1296,共8页
针对灰狼算法易陷入局部最优和后期寻优能力不足等缺点,提出改进非线性控制因子以提高算法收敛精度及稳定性。采用美国国家可再生能源实验室(National Renewable Energy Laboratory, NREL)"Gearbox Reliability Collaborative"... 针对灰狼算法易陷入局部最优和后期寻优能力不足等缺点,提出改进非线性控制因子以提高算法收敛精度及稳定性。采用美国国家可再生能源实验室(National Renewable Energy Laboratory, NREL)"Gearbox Reliability Collaborative"项目测试采集的风力机齿轮箱振动信号为分析对象,经集合经验模态分解后,计算各本征模态函数分量的模糊熵并构建高维特征向量,后利用等距映射进行降维。利用改进灰狼算法优化支持向量机,对降维后齿轮箱故障特征集进行诊断。结果表明:改进灰狼优化算法相较于灰狼算法、粒子群算法和遗传算法可有效避免陷入局部最优并提高支持向量机诊断精度及稳定度,在不同测试样本下其准确率均最高,平均准确率达93.17%。 展开更多
关键词 风力齿轮箱 故障诊断 改进灰狼算法优化 等距映射 支持向量
在线阅读 下载PDF
改进人工蜂群算法优化支持向量机及应用 被引量:18
14
作者 黄英双 曹辉 《计算机应用与软件》 北大核心 2021年第2期258-263,277,共7页
针对支持向量机(SVM)的惩罚因子和核函数参数选取难度较大的问题,提出利用改进的人工蜂群算法优化支持向量机相关参数的方法。为了提高ABC算法的寻优能力,在原始ABC算法的搜索公式中引入全局搜索因子。利用UCI数据集对优化后的模型进行... 针对支持向量机(SVM)的惩罚因子和核函数参数选取难度较大的问题,提出利用改进的人工蜂群算法优化支持向量机相关参数的方法。为了提高ABC算法的寻优能力,在原始ABC算法的搜索公式中引入全局搜索因子。利用UCI数据集对优化后的模型进行验证,证明了其良好的性能。将其应用于船舶压载水系统的故障诊断,实验结果表明,IABC算法能够搜索到更优的支持向量机参数,IABC-SVM模型的分类正确率和寻优能力要优于CV-SVM模型和ABC-SVM模型。 展开更多
关键词 支持向量 改进人工蜂群算法 参数优化 故障诊断
在线阅读 下载PDF
基于改进狮群算法的支持向量机参数优化方法 被引量:8
15
作者 吴程昊 莫路锋 《现代电子技术》 2022年第14期79-83,共5页
针对传统支持向量机在参数选择中存在的问题,文中提出一种利用改进的狮群算法优化支持向量机参数的方法。为了提高狮群算法(LSO)的寻优能力,在原始狮群算法的搜索公式中引入差分变异机制以及参数自适应调整策略,该方式可在保证算法前期... 针对传统支持向量机在参数选择中存在的问题,文中提出一种利用改进的狮群算法优化支持向量机参数的方法。为了提高狮群算法(LSO)的寻优能力,在原始狮群算法的搜索公式中引入差分变异机制以及参数自适应调整策略,该方式可在保证算法前期全局搜索能力和后期局部寻优能力的同时更易于跳出局部极值。引入人工鱼群算法中的觅食行为机制提高局部寻优能力,最终建立一种改进狮群算法(DALSO)。通过DALSO算法对支持向量机参数进行综合寻优以求取最优参数组合,从而提高支持向量机的求解精度。最后,利用测试函数和UCI数据集对DALSO优化SVM模型进行仿真测试与分类。实验结果表明:相比于多种对比算法,DALSO算法具有较强的寻优能力;与遗传算法、粒子群算法相比,DALSO优化SVM模型分类精度可提升6%~11%。 展开更多
关键词 改进狮群算法 支持向量 参数优化 性能评估 参数寻优 自适应调整
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
16
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 器学习 粒子群优化支持向量回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
考虑样本异常值的改进最小二乘支持向量机算法 被引量:43
17
作者 付乐天 李鹏 高莲 《仪器仪表学报》 CSCD 北大核心 2021年第6期179-190,共12页
针对最小二乘支持向量机对异常值敏感、缺乏鲁棒性的情况,提出一种考虑样本异常值的改进最小二乘支持向量机算法。该算法首先通过采用局部异常因子检测算法为每个数据样本计算一个LOF因子,根据其因子值能够有效地将样本分成正常样本和... 针对最小二乘支持向量机对异常值敏感、缺乏鲁棒性的情况,提出一种考虑样本异常值的改进最小二乘支持向量机算法。该算法首先通过采用局部异常因子检测算法为每个数据样本计算一个LOF因子,根据其因子值能够有效地将样本分成正常样本和异常样本,然后针对不同样本进行单独设置样本权重。其有效地保证了在降低异常样本权重的同时而不使正常样本权重受到影响,使最小二乘支持向量机在达到目标函数最优化的同时能够保证正常数据信息不丢失,以提高模型的鲁棒性。最后,通过引入"信息熵"和"平均粒距"来改进粒子群算法,将其应用于模型的参数优化。经过实验仿真表明,该算法能够有效地提高模型的鲁棒性,随着异常样本的增多,其模型精度提高大约67%。 展开更多
关键词 改进最小二乘支持向量 局部异常因子检测算法 改进粒子群优化算法
在线阅读 下载PDF
改进鲸鱼优化支持向量机的交通流量模糊粒化预测 被引量:11
18
作者 童林 官铮 《计算机应用》 CSCD 北大核心 2021年第10期2919-2927,共9页
针对支持向量机(SVM)在交通流量预测中存在波动性且预测精度低的问题,提出了采用模糊信息粒化(FIG)和改进鲸鱼优化算法(IWOA)的SVM模型来预测交通流量的变化趋势和动态区间。首先,对数据处理采用FIG方法进行处理,从而得到交通流量变化... 针对支持向量机(SVM)在交通流量预测中存在波动性且预测精度低的问题,提出了采用模糊信息粒化(FIG)和改进鲸鱼优化算法(IWOA)的SVM模型来预测交通流量的变化趋势和动态区间。首先,对数据处理采用FIG方法进行处理,从而得到交通流量变化区间的上界(Up)、下界(Low)和趋势值(R);其次,在鲸鱼优化算法(WOA)的种群初始化中采用动态对立学习来增加种群多样性,并引入了非线性收敛因子和自适应权重来增强算法的全局搜索及局部寻优能力,然后建立了IWOA模型,并分析了IWOA的复杂度;最后,以预测交通流量的均方误差(MSE)为目标函数,在IWOA迭代过程中不断优化SVM的超参数,建立了基于FIG-IWOA-SVM的交通流量区间预测模型。在国内和国外交通流量数据集上进行测试的结果表明,在国外交通流量预测上,与基于遗传算法优化的支持向量机(GASVM)、基于粒子群优化算法优化的支持向量机(PSO-SVM)和基于鲸鱼优化算法的支持向量机(WOA-SVM)相比,IWOA-SVM模型的平均绝对误差(MAE)分别降低了89.5%、81.5%和1.5%;而FIG-IWOA-SVM模型在交通流量动态区间和趋势预测上与FIG-GA-SVM、FIG-PSO-SVM和FIG-WOA-SVM等模型相比预测精度更高且预测范围更平稳。实验结果表明,在不增加算法复杂度的前提下,FIG-IWOA-SVM模型能够合理地预测交通流量的变化趋势和变化区间,为后续的交通规划和流量控制提供依据。 展开更多
关键词 模糊信息粒化 鲸鱼优化算法 支持向量 交通流量 区间预测
在线阅读 下载PDF
基于改进鲸鱼优化算法的外骨骼机器人步态检测 被引量:1
19
作者 何海琳 郑建彬 +2 位作者 余方利 余烈 詹恩奇 《计算机应用》 CSCD 北大核心 2019年第7期1905-1911,共7页
针对传统的外骨骼机器人步态检测算法中的信息单一化、准确率低、易陷入局部最优等问题,提出基于改进鲸鱼算法优化的支持向量机(IWOA-SVM)的外骨骼机器人步态检测算法,即在鲸鱼优化算法(WOA)中引入遗传算法(GA)的选择、交叉、变异操作,... 针对传统的外骨骼机器人步态检测算法中的信息单一化、准确率低、易陷入局部最优等问题,提出基于改进鲸鱼算法优化的支持向量机(IWOA-SVM)的外骨骼机器人步态检测算法,即在鲸鱼优化算法(WOA)中引入遗传算法(GA)的选择、交叉、变异操作,进而去优化支持向量机(SVM)的惩罚因子与核参数,再使用参数优化后的SVM建立分类模型,从而扩大算法的搜索范围,减小算法陷入局部最优的概率。首先,使用混合传感技术采集步态数据,即通过足底压力传感器和膝关节、髋关节角度传感器采集外骨骼机器人的运动数据,并作为步态检测系统的输入;然后,使用门限法对步态相位进行划分并标记标签;最后,将足底压力信号与髋关节、膝关节角度信号融合作为输入,使用IWOA-SVM算法完成对步态的检测。对6个标准测试函数进行仿真实验,并与GA、粒子群优化(PSO)算法、WOA进行比较,数值实验表明,改进鲸鱼优化算法(IWOA)的鲁棒性、寻优精度、收敛速度均优于其他优化算法。通过分析不同穿戴者的步态检测结果发现,准确率可达98.8%,验证了所提算法在新一代外骨骼机器人中的可行性和实用性,并与基于遗传优化算法的支持向量机(GA-SVM)、基于粒子群优化算法的支持向量机(PSO-SVM)、基于鲸鱼优化算法的支持向量机(WOA-SVM)算法进行比较,结果表明,该算法识别准确率分别提高了5.33%、2.70%、1.44%,能够对外骨骼机器人的步态进行有效检测,进而实现外骨骼机器人的精确控制及稳定行走。 展开更多
关键词 外骨骼器人 步态检测 鲸鱼优化算法 遗传算法 粒子群优化算法 支持向量
在线阅读 下载PDF
基于EWT-FE分析联合改进SVM算法的GIS局部放电诊断方法 被引量:5
20
作者 王利猛 王硕 《电气工程学报》 CSCD 北大核心 2024年第1期371-381,共11页
为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结... 为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结合模糊熵(Fuzzy entropy,FE)算法对信号进行分解,并提取有效特征量;为提高支持向量机(Support vector machine,SVM)算法自适应能力与分类识别精度,提出利用经过余弦衰减计算方法以及指数下降函数改进的猎人猎物优化(Improved hunter-prey optimizer,IHPO)算法对SVM算法参数进行优化选取;搭建GIS局部放电试验模型,建立基于EWT-FE信号分析结合IHPO-SVM的局部放电识别模型,对所提算法有效性进行验证。试验结果表明,所提算法GIS局部放电类型诊断精度均大于95%,优于传统诊断算法。 展开更多
关键词 局部放电 气体绝缘组合电器 经验小波变换 模糊熵 改进猎人猎物优化算法 支持向量算法
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部