针对当前网络入侵检测中的数据量较大、数据维度较高的特点,将飞蛾扑火优化(MFO)算法应用于网络入侵检测的特征选择中。鉴于MFO算法收敛过快、易陷入局部最优的问题,提出一种融合粒子群优化(PSO)的二进制飞蛾扑火优化(BPMFO)算法。该算...针对当前网络入侵检测中的数据量较大、数据维度较高的特点,将飞蛾扑火优化(MFO)算法应用于网络入侵检测的特征选择中。鉴于MFO算法收敛过快、易陷入局部最优的问题,提出一种融合粒子群优化(PSO)的二进制飞蛾扑火优化(BPMFO)算法。该算法引入MFO螺旋飞行公式,具有较强的局部搜索能力;结合了粒子群优化(PSO)算法的速度更新方法,让种群个体随着全局最优解和历史最优解的方向移动,增强算法的全局收敛性,从而避免易陷入局部最优。仿真实验以KDD CUP 99数据集为实验基础,分别采用支持向量机(SVM)、K最近邻(KNN)算法和朴素贝叶斯(NBC)3种分类器,与二进制飞蛾扑火优化(BMFO)算法、二进制粒子群优化(BPSO)算法、二进制遗传算法(BGA)、二进制灰狼优化(BGWO)算法和二进制布谷鸟搜索(BCS)算法进行了实验对比。实验结果表明,BPMFO算法应用于网络入侵检测的特征选择时,在算法精度、运行效率、稳定性、收敛速度以及跳出局部最优的综合性能上具有明显优势。展开更多
光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(ma...光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(maximum power point tracking)控制策略。首先引入混沌Sine映射构造1种非线性随机递增惯性权重,并在粒子群的“个体认知”部分引入高斯扰动,同时利用对数函数构造学习因子,形成基于混沌映射和高斯扰动的改进粒子群算法;通过对6种典型单峰、多峰函数的测试,证明该算法收敛速度更快,不易陷入局部最优;将算法应用于MPPT控制中,并进一步通过不同算法MPPT控制进行对比仿真研究。对比仿真结果表明:在均匀光照强度、局部静态遮荫和动态遮荫3种情况下,基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略均具有更快的收敛速度和更小的搜索振荡幅度,能准确地搜寻到最大功率点,具有更高的寻优精度,从而提高了MPPT系统的发电效率。展开更多
文摘针对当前网络入侵检测中的数据量较大、数据维度较高的特点,将飞蛾扑火优化(MFO)算法应用于网络入侵检测的特征选择中。鉴于MFO算法收敛过快、易陷入局部最优的问题,提出一种融合粒子群优化(PSO)的二进制飞蛾扑火优化(BPMFO)算法。该算法引入MFO螺旋飞行公式,具有较强的局部搜索能力;结合了粒子群优化(PSO)算法的速度更新方法,让种群个体随着全局最优解和历史最优解的方向移动,增强算法的全局收敛性,从而避免易陷入局部最优。仿真实验以KDD CUP 99数据集为实验基础,分别采用支持向量机(SVM)、K最近邻(KNN)算法和朴素贝叶斯(NBC)3种分类器,与二进制飞蛾扑火优化(BMFO)算法、二进制粒子群优化(BPSO)算法、二进制遗传算法(BGA)、二进制灰狼优化(BGWO)算法和二进制布谷鸟搜索(BCS)算法进行了实验对比。实验结果表明,BPMFO算法应用于网络入侵检测的特征选择时,在算法精度、运行效率、稳定性、收敛速度以及跳出局部最优的综合性能上具有明显优势。
文摘光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(maximum power point tracking)控制策略。首先引入混沌Sine映射构造1种非线性随机递增惯性权重,并在粒子群的“个体认知”部分引入高斯扰动,同时利用对数函数构造学习因子,形成基于混沌映射和高斯扰动的改进粒子群算法;通过对6种典型单峰、多峰函数的测试,证明该算法收敛速度更快,不易陷入局部最优;将算法应用于MPPT控制中,并进一步通过不同算法MPPT控制进行对比仿真研究。对比仿真结果表明:在均匀光照强度、局部静态遮荫和动态遮荫3种情况下,基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略均具有更快的收敛速度和更小的搜索振荡幅度,能准确地搜寻到最大功率点,具有更高的寻优精度,从而提高了MPPT系统的发电效率。