期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进卷积深度置信网络的轴承故障诊断研究 被引量:21
1
作者 谢佳琪 尤伟 +1 位作者 沈长青 朱忠奎 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期36-43,共8页
机械设备故障诊断在工业应用中具有重要的意义。传统的基于振动信号处理与分析的故障诊断方法,依赖于丰富的专业知识和人工经验,难以保证准确的特征提取与故障诊断。利用深度学习方法可以自动学习数据深层次特征的特点,提出一种基于改... 机械设备故障诊断在工业应用中具有重要的意义。传统的基于振动信号处理与分析的故障诊断方法,依赖于丰富的专业知识和人工经验,难以保证准确的特征提取与故障诊断。利用深度学习方法可以自动学习数据深层次特征的特点,提出一种基于改进卷积深度置信网络的滚动轴承故障定性、定量诊断方法。首先,为了提供较好的浅层输入,将原始振动信号转换至频域信号;其次,在模型训练过程中,引入Adam优化器,加快模型训练,提高模型收敛速度;最后,为了充分发挥模型各层特征表征能力,对模型结构进行优化,提出多层特征融合学习结构,以提高模型的泛化能力。实验结果表明,所提出的改进模型相比于传统的栈式自动编码器、人工神经网络、深度置信网络以及标准卷积深度信念网络,具有更好的诊断精度,有效地实现了轴承故障的定性、定量化诊断。 展开更多
关键词 故障诊断 轴承 特征学习 卷积深度置信网络
在线阅读 下载PDF
融合卷积深度置信网络与可拓神经网络的齿轮故障诊断方法
2
作者 王体春 夏天 费叶琦 《计算机集成制造系统》 北大核心 2025年第6期2178-2193,共16页
针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入... 针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入软池化层优化的膨胀卷积深度置信网络进行特征提取,并采用注意力机制技术加权融合多通道特征;利用侧距优化的加权可拓神经网络完成齿轮故障分类。最后,通过公开数据集进行验证和对比分析表明,该模型相比卷积神经网络模型、深度置信网络模型、高斯卷积深度置信网络模型等具有更高的识别精度,在噪声干扰和变工况条件下具有良好的故障诊断性能。 展开更多
关键词 深度学习 卷积深度置信网络 可拓神经网络 故障诊断
在线阅读 下载PDF
基于卷积深度置信网络的配电网故障分类方法 被引量:20
3
作者 洪翠 付宇泽 +1 位作者 郭谋发 陈永往 《电力自动化设备》 EI CSCD 北大核心 2019年第11期64-70,共7页
提出一种基于卷积深度置信网络(CDBN)实现配电网故障分类的方法,利用离散小波包变换(DWPT)分解主变低压侧进线电流和母线电压等电量信号并构造时频矩阵,将时频矩阵转换成时频谱图的像素矩阵后作为CDBN的输入,经CDBN自主提取故障特征量,... 提出一种基于卷积深度置信网络(CDBN)实现配电网故障分类的方法,利用离散小波包变换(DWPT)分解主变低压侧进线电流和母线电压等电量信号并构造时频矩阵,将时频矩阵转换成时频谱图的像素矩阵后作为CDBN的输入,经CDBN自主提取故障特征量,最终完成配电网故障分类识别。应用典型结构配电网的故障仿真数据与故障实验样本进行故障识别测试,结果表明,所提方法不但具有提取故障特征明显、故障分类正确率较高的特点,并且在系统中性点运行方式及网络结构调整、故障起动检测延迟、分布式电源接入等情况下,均有良好的应用适应性。 展开更多
关键词 配电网 故障分类 离散小波包变换 时频矩阵 卷积深度置信网络
在线阅读 下载PDF
基于改进深度置信网络的木板表面缺陷检测模型 被引量:4
4
作者 李馥颖 杨大为 黄海 《南京理工大学学报》 CAS CSCD 北大核心 2022年第6期728-734,共7页
为了提高木板表面缺陷检测精度,采用连续型深度置信网络(DBN)建立木板表面缺陷检测模型。首先,对待检测的木板图片进行关键特征提取,并建立DBN检测模型。然后,将木板图片特征输入DBN的多个受限玻尔兹曼机(RBM)层进行深度训练,从而利用DB... 为了提高木板表面缺陷检测精度,采用连续型深度置信网络(DBN)建立木板表面缺陷检测模型。首先,对待检测的木板图片进行关键特征提取,并建立DBN检测模型。然后,将木板图片特征输入DBN的多个受限玻尔兹曼机(RBM)层进行深度训练,从而利用DBN的深度优势来获得木板表面缺陷检测结果。最后,引入人工蜂群(ABC)算法对DBN的权重参数进行优化从而缩短训练时间。实例测试实验结果表明:选择学习速率为0.075时,ABC-DBN算法在划痕、刮痕、裂缝、崩缺4类样本集中的均方根误差(RMSE)均值性能更优。采用卷积神经网络(CNN)、快速区域卷积神经网络(Faster R-CNN)、自适应增强卷积神经网络(AdaBoost-CNN)和ABC-DBN算法分别进行检测准确率对比实验。结果显示,ABC-DBN算法检测准确率RMSE为5.067×10^(-2),是最优结果,Adaboost-CNN算法次之,CNN算法最差。 展开更多
关键词 深度置信网络 木板表面 缺陷检测 受限玻尔兹曼机 人工蜂群算法 卷积神经网络 快速区域卷积神经网络 自适应增强卷积神经网络
在线阅读 下载PDF
基于改进深度置信网络的大棚冬枣病虫害预测模型 被引量:29
5
作者 张善文 张传雷 丁军 《农业工程学报》 EI CAS CSCD 北大核心 2017年第19期202-208,共7页
导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降... 导致冬枣病虫害发生的原因很多而且很复杂,利用传统的数学方法和神经网络(neural network,NN)很难建立正确的病虫害预测模型。由于典型的深度置信网络(deep belief network,DBN)的各层之间缺乏有监督训练,使得网络误差逐层向上传递,降低了预测模型的预测率。针对这些问题,引入冬枣病虫害的先验信息,提出一种基于环境信息和改进DBN的冬枣病虫害预测模型。在该模型中,通过无监督训练和有监督微调从冬枣生长的环境信息序列中获取可表征冬枣病虫害发生的深层特征的隐层参数,并形成新的特征集,然后在预测模型的顶层通过一个后向传播神经网络(back propagation neural network,BPNN)进行病虫害预测。从2014—2017年的4 a时间内,利用农业物联网传感器采集30个大棚冬枣常见的2种虫害和3种病害发生的环境信息序列6 000多条,由此验证所提出的预测模型,平均预测正确率高达84.05%。与基于强模糊支持向量机、改进型NN和BPNN的3种病虫害预测模型进行了试验比较,预测正确率提高了20多个百分点。试验结果表明,该模型极大提高了大棚冬枣病虫害的预测正确率。该研究可为大棚冬枣病虫害预测提供技术参考。 展开更多
关键词 病害 预测 模型 冬枣生长环境信息 虫害 深度置信网络 改进深度置信网络
在线阅读 下载PDF
基于深度置信网络与信息融合的齿轮故障诊断方法 被引量:27
6
作者 李益兵 黄定洪 +1 位作者 马建波 江丽 《振动与冲击》 EI CSCD 北大核心 2021年第8期62-69,共8页
针对齿轮在复杂运行工况下故障特征提取困难,传统故障诊断方法的识别精度易受人工提取特征的影响,以及单传感器获取信息不全面等问题,提出基于深度置信网络(DBN)与信息融合的齿轮故障诊断方法。通过多传感器信息融合技术对每个传感器采... 针对齿轮在复杂运行工况下故障特征提取困难,传统故障诊断方法的识别精度易受人工提取特征的影响,以及单传感器获取信息不全面等问题,提出基于深度置信网络(DBN)与信息融合的齿轮故障诊断方法。通过多传感器信息融合技术对每个传感器采集的振动信号进行数据层融合;利用DBN进行自适应特征提取从而实现故障分类。为了避免因人为选择DBN结构参数,导致模型识别精度下降的问题,利用改进的混合蛙跳算法(ISFLA)对DBN结构参数进行优化。试验表明,与BP神经网络、未经优化的DBN以及单传感器故障诊断相比,该研究提出的信息融合及优化方法具有更高的故障识别精度。 展开更多
关键词 故障诊断 深度置信网络(DBN) 改进混合蛙跳算法(ISFLA) 多传感器信息融合 齿轮
在线阅读 下载PDF
基于改进BP算法在深度神经网络学习中的研究 被引量:6
7
作者 黄培 《机械强度》 CAS CSCD 北大核心 2018年第4期796-801,共6页
深度学习能够使包含多个处理层的计算模型去学习含有多层次抽象表示的数据。这种学习方式在最先进的语音识别、视觉物体识别、物体检测以及许多其它领域,比如生物基因学和医学等都带来了明显的改善。深度学习能够发现大数据中的复杂结构... 深度学习能够使包含多个处理层的计算模型去学习含有多层次抽象表示的数据。这种学习方式在最先进的语音识别、视觉物体识别、物体检测以及许多其它领域,比如生物基因学和医学等都带来了明显的改善。深度学习能够发现大数据中的复杂结构,而卷积神经网络作为深度学习的重要模型之一在处理语音、图像、视频和文本等方面带来了新的突破。它是利用BP算法来引导机器如何从前一层获取误差来调整本层的参数,从而使这些参数更有利于模型的计算。针对传统BP算法存在的收敛速度慢、常陷入局部极小点的不足,提出了一种快速的BP改进算法。利用改进后的卷积神经网络分别在数据集MNIST、英文字符识别以及医学图像中做实验验证,仿真结果表明了该算法的有效性。 展开更多
关键词 深度学习 卷积神经网络 改进BP算法
在线阅读 下载PDF
基于深度置信网络的齿轮箱智能诊断方法 被引量:5
8
作者 段礼祥 赵剑平 +2 位作者 曲海涛 张德军 秦天飞 《科学技术与工程》 北大核心 2020年第27期11099-11104,共6页
针对油田现场强背景噪声干扰下,难以实现齿轮箱故障精确诊断的问题,提出基于深度置信网络(deep belief network,DBN)的齿轮箱智能诊断方法。首先运用变分模态分解(variational mode decomposition,VMD)对齿轮箱振动信号分别进行分解;然... 针对油田现场强背景噪声干扰下,难以实现齿轮箱故障精确诊断的问题,提出基于深度置信网络(deep belief network,DBN)的齿轮箱智能诊断方法。首先运用变分模态分解(variational mode decomposition,VMD)对齿轮箱振动信号分别进行分解;然后依据互相关准则对小于阈值的模态运用最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)进行降噪滤波处理,并对降噪后的信号进行重构;最后构造故障特征集,实现基于DBN的故障特征自适应挖掘与故障模式智能识别。对现场的齿轮箱故障诊断表明,本文方法具有自适应性,能显著提高故障分类准确率,为保障油田设备安全可靠运行提供了依据。 展开更多
关键词 齿轮箱 深度置信网络 变分模态分解 最大相关峭度解卷积 故障诊断
在线阅读 下载PDF
基于改进型卷积网络的汽车高度调节器缺陷检测方法 被引量:13
9
作者 鲍光海 林善银 徐林森 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第2期157-165,共9页
针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度... 针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度的同时减少了参数计算量。改进的结构主要运用卷积层、池化层、批标准化层、softmax层,并引入残差网络结构和可分离卷积。实验结果表明,基于改进型卷积网络的汽车高度调节器缺陷检测方法有着良好的识别精度,在汽车高度调节器多类缺陷的检测实验中,准确率均在99%以上,优于经典卷积网络VGG16。 展开更多
关键词 深度学习 改进卷积网络 残差网络 汽车高度调节器 缺陷检测
在线阅读 下载PDF
基于改进的一维卷积神经网络的高分辨距离像识别方法 被引量:3
10
作者 陆金文 殷红成 +2 位作者 盛晶 袁莉 董纯柱 《电光与控制》 CSCD 北大核心 2020年第8期19-22,27,共5页
为了提高宽带雷达高分辨距离像目标识别性能,提出一种改进的一维卷积神经网络模型。考虑实际目标样本不足和信噪比低的问题,引入全局平均池化对整个网络模型做正则化,防止过拟合。针对真假目标形状和尺寸相似的情况,分析了该模型对不同... 为了提高宽带雷达高分辨距离像目标识别性能,提出一种改进的一维卷积神经网络模型。考虑实际目标样本不足和信噪比低的问题,引入全局平均池化对整个网络模型做正则化,防止过拟合。针对真假目标形状和尺寸相似的情况,分析了该模型对不同形状和尺寸目标的识别效果。实验结果表明,在训练样本数量较少和噪声干扰条件下,该模型可以有效地实现目标类型和尺寸识别。所提模型有助于解决实际真假目标形状和尺寸相似、样本不足以及信噪比低等情况下的雷达高分辨距离像自动目标识别问题。 展开更多
关键词 高分辨距离像 目标识别 改进的一维卷积神经网络 深度学习
在线阅读 下载PDF
基于深度时间卷积神经网络的风电功率预测 被引量:5
11
作者 刘晗 王硕禾 +2 位作者 张嘉姗 常宇健 张国驹 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第2期127-135,共9页
为了提高风力发电预测的准确性,依据某近海地区风电场出力数据,提出基于深度时间卷积网络的风电功率组合预测模型;利用自适应集成经验模态分解对风电功率序列进行特征提取,得到若干本征模态分量,通过排列熵相关理论计算各模态分量的复杂... 为了提高风力发电预测的准确性,依据某近海地区风电场出力数据,提出基于深度时间卷积网络的风电功率组合预测模型;利用自适应集成经验模态分解对风电功率序列进行特征提取,得到若干本征模态分量,通过排列熵相关理论计算各模态分量的复杂度,根据复杂度进行序列重构,并输入至改进余弦退火算法优化的深度时间卷积网络中进行风电功率分析与预测。结果表明,该模型与其他模型相比具有较好的预测效果,能够有效提高超短期风电功率预测精度。 展开更多
关键词 风电功率预测 深度时间卷积网络 自适应集成经验模态分解 排列熵 改进余弦退火
在线阅读 下载PDF
镁合金焊缝成形的优化深度置信网络预测 被引量:1
12
作者 张峰 阴伟锋 +1 位作者 田坤 张建霞 《机械设计与制造》 北大核心 2022年第11期174-178,共5页
为了提高熔化极惰性气体保护电弧焊的焊缝成形预测精度和预测稳定性,提出了优化深度置信网络的预测方法。经分析选择了对焊接成形有影响的4个参数作为预测输入,分别为焊接速度、焊接电流、焊接电压、焊丝干伸长;选择可以反映焊缝形状的... 为了提高熔化极惰性气体保护电弧焊的焊缝成形预测精度和预测稳定性,提出了优化深度置信网络的预测方法。经分析选择了对焊接成形有影响的4个参数作为预测输入,分别为焊接速度、焊接电流、焊接电压、焊丝干伸长;选择可以反映焊缝形状的熔深、熔宽、余高作为预测输出。使用深度置信网络构造焊缝成形预测网络模型,鉴于误差反向传播的参数训练方法容易陷入局部极值,这里提出了分阶段扰动粒子群算法对DBM参数进行优化,从而提高算法预测精度和预测稳定性。经试验验证,优化深度置信网络对焊缝形状参数的预测精度比传统深度置信网络提高了一个数量级,同时预测稳定性也高于深度置信网络,证明了这里算法对焊缝成形预测的有效性。 展开更多
关键词 焊缝成形预测 深度置信网络 改进粒子群算法优化 预测稳定性
在线阅读 下载PDF
基于ISFLA优化深度置信网络的滚动轴承故障诊断方法研究 被引量:6
13
作者 齐洪方 黄定洪 《机电工程》 CAS 北大核心 2021年第1期62-68,共7页
传统故障诊断模型训练时易陷入局部最优、模型泛化能力差,且故障识别精度易受人工特征提取质量的影响,针对这一问题对滚动轴承故障诊断方法进行了研究。首先,提出了基于深度置信网络(DBN)的滚动轴承故障诊断模型,研究了DBN模型的逐层自... 传统故障诊断模型训练时易陷入局部最优、模型泛化能力差,且故障识别精度易受人工特征提取质量的影响,针对这一问题对滚动轴承故障诊断方法进行了研究。首先,提出了基于深度置信网络(DBN)的滚动轴承故障诊断模型,研究了DBN模型的逐层自适应特征提取能力;然后,提出了一种改进的混合蛙跳算法(ISFLA),对DBN各隐含层神经元个数和反向微调算法学习率进行了优化;最后,在不进行任何特征提取的情况下,利用美国凯斯西储大学的轴承数据集进行了实验研究,提取了原始时域振动信号,进行了故障特征分析,并与BP、DBN和PSO-DBN算法进行了对比。研究结果表明:与其他方法相比,ISFLA-DBN的故障识别精度最高,算法收敛速度最快,模型泛化能力最好。 展开更多
关键词 滚动轴承 故障诊断 深度置信网络 改进混合蛙跳算法
在线阅读 下载PDF
基于热力图和置信度的无人机关键部位检测
14
作者 黄成琪 徐昆仑 +1 位作者 张勇 武亮明 《火力与指挥控制》 北大核心 2025年第7期168-175,184,共9页
为应对无人机防控中关键部位识别的挑战,提出基于热力图回归和置信度分数的检测方法,以解决因无人机姿态多变引发的位置相近部位易漏检及遮挡易误检的问题。构建无人机图像数据集;利用热力图回归将关键部位检测转化为关键点定位任务,有... 为应对无人机防控中关键部位识别的挑战,提出基于热力图回归和置信度分数的检测方法,以解决因无人机姿态多变引发的位置相近部位易漏检及遮挡易误检的问题。构建无人机图像数据集;利用热力图回归将关键部位检测转化为关键点定位任务,有效缓解相近部位漏检问题;设计置信度分数评估关键点可见性,并结合对称结构修正,减少关键部位遮挡导致的误检。实验结果表明,该方法显著提高了无人机关键部位检测的准确率。 展开更多
关键词 热力图回归 置信度分数 深度学习 关键部位检测 目标识别 卷积神经网络
在线阅读 下载PDF
基于三流联合卷积神经网络的机械臂抓取检测 被引量:7
15
作者 王勇 陈荟西 《小型微型计算机系统》 CSCD 北大核心 2020年第5期1112-1116,共5页
目前已有一些研究将深度学习应用于机械臂的抓取检测中,但很难同时保证检测的实时性和准确性.本文提出一种用于抓取检测的三流联合卷积神经网络模型,该模型由三个独立的深度卷积神经网络流组成,其中每个流分别处理其对应的输入模态,并... 目前已有一些研究将深度学习应用于机械臂的抓取检测中,但很难同时保证检测的实时性和准确性.本文提出一种用于抓取检测的三流联合卷积神经网络模型,该模型由三个独立的深度卷积神经网络流组成,其中每个流分别处理其对应的输入模态,并将它们以一种后期融合的方式结合在一起;然后利用改进的单级回归算法进行抓取位置预测,并提出一种新的置信度计算方式.该模型在康奈尔抓取数据集上图像分割和对象分割的准确率分别为94.9%和93.7%.并且在GPU上以每秒14.2帧的速度进行实时检测.测试结果表明,我们的模型同时保证了抓取检测的实时性与准确性,提高了检测的速度与精度. 展开更多
关键词 抓取检测 三流联合 深度卷积神经网络 单级回归 置信度计算
在线阅读 下载PDF
基于深度残差网络与迁移学习的水稻虫害图像识别 被引量:5
16
作者 汪健 梁兴建 雷刚 《中国农机化学报》 北大核心 2023年第9期198-204,共7页
提出一个针对大多数类型的水稻害虫的图像识别方法。对ResNet34网络进行改进,提高网络的识别能,以实现基于给定的图像自动地识别分类出主要害虫。此外,基于迁移学习方法有效避免由于数据量缺乏而使得训练不足的问题。通过ImageNet数据... 提出一个针对大多数类型的水稻害虫的图像识别方法。对ResNet34网络进行改进,提高网络的识别能,以实现基于给定的图像自动地识别分类出主要害虫。此外,基于迁移学习方法有效避免由于数据量缺乏而使得训练不足的问题。通过ImageNet数据库开展网络参数预训练能够进一步提升网络的提取性能,通过IDADP数据库可以开展参数微调工作以及训练工作。将提出的改进ResNet34模型与其他模型的性能进行对比评估。结果显示,改进ResNet34模型的识别准确度最高,F 1-score达到0.98,证明所提模型对水稻病虫害图像具有较好的识别效果。 展开更多
关键词 水稻害虫 深度残差网络 迁移学习 改进ResNet34模型 卷积神经网络
在线阅读 下载PDF
基于改进U-Net网络的光伏板图像分割方法 被引量:6
17
作者 任喜伟 韩欣 +1 位作者 钟弋 何立风 《陕西科技大学学报》 北大核心 2023年第2期155-161,共7页
光伏板区域识别与分割对光伏板的缺陷精确检测和组件精准定位有重要意义.在复杂环境下,针对光伏板图像存在对比度不强、边界模糊、背景复杂等影响分割的问题,提出了一种改进U-Net网络的光伏板图像分割方法.首先,搭建基于U-Net网络的对... 光伏板区域识别与分割对光伏板的缺陷精确检测和组件精准定位有重要意义.在复杂环境下,针对光伏板图像存在对比度不强、边界模糊、背景复杂等影响分割的问题,提出了一种改进U-Net网络的光伏板图像分割方法.首先,搭建基于U-Net网络的对称编码-解码结构骨干网络;其次,使用深度可分离卷积替代传统卷积,并将高效ECA注意力模块添加到两组深度可分离卷积之间,以两组深度可分离卷积和一个ECA注意力模块组成一个block块,利用多个block块提升多层网络的分割性能;之后,引入交叉熵损失、Dice损失、Focal损失线性加权和作为新的损失函数,训练改进U-Net网络;最后,为验证方法的有效性,将改进U-Net网络与MobileNetV2网络、U-Net网络、Res-U-Net网络分别在3 200张光伏板红外图像数据集上进行横向对比.结果表明:改进U-Net网络的PA值和MIoU值达到了0.993 1和0.980 2,均优于其他3种网络模型,且参数量只有U-Net网络和Res-U-Net网络的33.3%和30.4%,仅次于MobileNetV2网络.因此,改进U-Net网络具有较高的准确性和泛化性,能够完成光伏板图像分割任务. 展开更多
关键词 改进U-Net网络 光伏板图像分割 深度可分离卷积 ECA注意力模块 损失函数
在线阅读 下载PDF
基于空间结构化推理深度融合网络的RGB-D场景解析 被引量:5
18
作者 王泽宇 吴艳霞 +1 位作者 张国印 布树辉 《电子学报》 EI CAS CSCD 北大核心 2018年第5期1253-1258,共6页
为了弥补RGB-D场景解析中卷积神经网络空间结构化学习能力的不足,本文基于深度学习提出空间结构化推理深度融合网络,内嵌的结构化推理层有机地结合条件随机场和空间结构化推理模型,该层能够较为全面而准确地学习物体所处三维空间的物体... 为了弥补RGB-D场景解析中卷积神经网络空间结构化学习能力的不足,本文基于深度学习提出空间结构化推理深度融合网络,内嵌的结构化推理层有机地结合条件随机场和空间结构化推理模型,该层能够较为全面而准确地学习物体所处三维空间的物体分布以及物体间的三维空间位置关系.在此基础上,网络的特征融合层巧妙地利用深度置信网络和改进的条件随机场,该层可以根据融合生成的物体综合语义信息和物体间语义相关性信息完成深度结构化学习.实验结果表明,在标准RGB-D数据集NYUDv2和SUNRGBD上,空间结构化推理深度融合网络分别实现最优的平均准确率53.8%和54.6%,从而有助于实现机器人任务规划、车辆自动驾驶等智能计算机视觉任务. 展开更多
关键词 RGBD场景解析 深度学习 卷积神经网络 条件随机场 空间结构化推理模型 深度置信网络 计算机视觉 机器人任务规划 车辆自动驾驶
在线阅读 下载PDF
视频识别深度学习网络综述 被引量:9
19
作者 钱文祥 衣杨 《计算机科学》 CSCD 北大核心 2022年第S02期341-350,共10页
视频识别是计算机视觉领域中最重要的任务之一,受到了研究者的广泛关注。视频识别指从视频片段中提取特征,并依据特征识别视频动作。相比于静态图片,视频的各帧间存在较大的关联性。如何高效地使用来自时空等不同维度的特征信息准确地... 视频识别是计算机视觉领域中最重要的任务之一,受到了研究者的广泛关注。视频识别指从视频片段中提取特征,并依据特征识别视频动作。相比于静态图片,视频的各帧间存在较大的关联性。如何高效地使用来自时空等不同维度的特征信息准确地识别视频,是当前研究的重点。以视频识别技术为研究对象,首先介绍了视频识别研究的背景信息及常用数据集。然后,详细地梳理了视频识别方法的演变过程;回顾了基于时空兴趣点、密集轨迹、改进的密集轨迹等传统的视频识别方法,以及近年来提出的可用于视频识别的深度学习网络框架。其中,分别介绍了基于2D卷积神经网络的视频识别框架、基于3D卷积神经网络的视频框架、伪3D卷积神经网络,以及基于Transformer结构的网络,介绍了这些框架的演变,并总结了它们的实现细节及特点;评测了各网络在不同视频识别数据集上的表现情况,分析了各网络的适用场景。最后,展望了视频识别网络框架未来的研究趋势。视频识别任务可以自动、高效地识别出视频所属的类别,基于深度学习的视频识别具有广泛的实用价值。 展开更多
关键词 视频识别 改进的密集轨迹 深度学习 双流网络 卷积神经网络 深度自注意力网络
在线阅读 下载PDF
改进GWO优化DBN网络的变压器故障诊断研究 被引量:4
20
作者 万周立 刘辉 《现代电子技术》 2021年第19期163-168,共6页
为了提高电力变压器故障诊断准确率,提出一种基于改进灰狼算法(IGWO)优化深度置信网络(DBN)变压器故障诊断模型。针对灰狼算法易陷入局部极值的问题,采用余弦变化规律的收敛因子更新公式,减缓收敛因子在迭代前期的递减速度,而加快其在... 为了提高电力变压器故障诊断准确率,提出一种基于改进灰狼算法(IGWO)优化深度置信网络(DBN)变压器故障诊断模型。针对灰狼算法易陷入局部极值的问题,采用余弦变化规律的收敛因子更新公式,减缓收敛因子在迭代前期的递减速度,而加快其在迭代后期的递减速度,使算法区分全局与局部搜索;采用对立搜索策略对狼群进行初始化,提高算法收敛速度。通过7种函数的仿真测试证明了改进的灰狼算法具有更好的寻优能力。针对DBN网络权值初始化方式的缺陷,使用改进后的灰狼算法优化DBN网络连接权值,提高了网络的分类性能,通过与其他算法的对比仿真,证明了设计模型具有更高的诊断准确率、更好的拟合效果以及很好的应用前景。 展开更多
关键词 变压器故障诊断 深度置信网络 改进灰狼算法 诊断流程 对立搜索 权重优化 实验分析
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部