Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability...Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability beach-bar sandstone reservoir of Es4 in Dongying sag. The results indicated the reservoir has the characteristics of middle-low pores,low-permeability,low compositional and structural maturity,and thin throat. The low-permeability is mainly due to sedimentation (fine particles and argillaceous inter beds) and diagenesis (compaction,cementation,and dissolution). The cementation reduced the physical property of the reservoir mainly by carbonate cementation,quartz autogeny and enragement,and autogeny clay. Clay minerals usually jam the pores by filling holes,close-fitting the wall of hole,bridging,wrapping grains,and separate attaching the pores and so on. The dissolution is insufficient so as not to improve the porosity and permeability of the reservoir obviously. So it is also an important factor of forming low-permeability reservoir.展开更多
Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by ...Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.展开更多
Hydrophilic characteristics of rocks are affected by their microscopic pore structures,which clearly change after water absorption.Water absorption tests and scanning electron microscopic(SEM) experiments on rock sa...Hydrophilic characteristics of rocks are affected by their microscopic pore structures,which clearly change after water absorption.Water absorption tests and scanning electron microscopic(SEM) experiments on rock samples,located at a site in Tibet,China,were carried out Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores.The results show that surface porosities,fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water.There were points of inflection on their water absorption curves.After water absorption of other rocks,surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled.Water absorption curves did not change.Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.展开更多
The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone ...The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone composition and fracture mechanism were studied from a meso-structural per- spective, and the relationship between meso-structure and macro-mechanical characteristics at high temperature was revealed. The findings demonstrated that the fluctuation in diffraction intensity of kao- linite in the mudstone caused the fluctuation in its mechanical properties. The overall structure under- went a phase change around 600℃, which led to the sudden change in the mechanical properties of mudstone samples. When the temperature reached 600 ℃, the crystalline state worsened and kaolinite disappeared; however, some illite was produced, indicating that the chemical reaction of the structure and sudden drop of bearing capacity of the mudstone. Mudst0ne fracturing at high temperature involves mainly intergranular and transgranular fractures, which are typical in micro-brittle tensile failure. Con- sidering the macro-fracture characteristics of mudstone, the results suggested that macro-fracture under external force corresoonds to the meso-fracture.展开更多
The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electro...The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electron microscope(SEM), and the possible coke formation processes were investigated as well. The results showed that some of the heavy nonvolatile oil droplets entrained in the flowing oil and gas mixture could possibly deposit or collide on the walls by gravity settling or turbulence diffusion, and then were gradually carbonized into solid coke by condensing and polymerization along with dehydrogenation. Meanwhile some of fine catalyst particles also built up and integrated into the solid coke. The coke can be classified into two types, namely, the hard coke and the soft coke, according to its property, composition and microstructure. The soft coke is formed in the oil and gas mixture's stagnant region where the oil droplets and catalyst particles are freely settled on the wall. The soft coke appears to be loose and contains lots of large catalyst particles. However, the hard coke is formed in the oil and gas mixture's flowing region where the oil droplets and catalyst particles diffuse towards the wall. This kind of coke is nonporous and very hard, which contains a few fine catalyst particles. Therefore, it is clear that the oil and gas mixture not only carries the oil droplets and catalyst particles, but also has the effects on their deposition on the wall, which can influence the composition and characteristics of deposited coke.展开更多
Based on the techniques of X-ray diffraction analysis, identification of the thin sections of core cast, phys- ical analysis and scanning electron microscopy analysis, this paper studied the reservoir characteristics ...Based on the techniques of X-ray diffraction analysis, identification of the thin sections of core cast, phys- ical analysis and scanning electron microscopy analysis, this paper studied the reservoir characteristics of the Carboniferous strata in Donghe well No.1 of Tarim region. The results show that the reservoir lithology is mainly the fine-grained quartz sandstone with ferrocalcite and pyrite, mud cement-based, the permeability concentrated in 5-40 × 10-3 μm2, a small part of the high permeability up to 150-327 ×10-3 μm2 and porosity ranged from 10% to 20%. The most part of the reservoirs is low perme- ability with a small part of the layer in moderate-high permeability. The types of reservoir space include intergranular pores, intra particle-molding pores, micro-pores and cracks, which mainly are intergranular pores with the pore diameter of 15-200 μm, 95.5μm on average. And the types of the throats are comolex with the main tvne of constricted l:hroats in this area and large contribution to the permeability.展开更多
基金Project P06012 supported by the Key Research Project of SINOPEC
文摘Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability beach-bar sandstone reservoir of Es4 in Dongying sag. The results indicated the reservoir has the characteristics of middle-low pores,low-permeability,low compositional and structural maturity,and thin throat. The low-permeability is mainly due to sedimentation (fine particles and argillaceous inter beds) and diagenesis (compaction,cementation,and dissolution). The cementation reduced the physical property of the reservoir mainly by carbonate cementation,quartz autogeny and enragement,and autogeny clay. Clay minerals usually jam the pores by filling holes,close-fitting the wall of hole,bridging,wrapping grains,and separate attaching the pores and so on. The dissolution is insufficient so as not to improve the porosity and permeability of the reservoir obviously. So it is also an important factor of forming low-permeability reservoir.
基金financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(Project No.CSTC,2014JCYJAA50021)the Innovation Fund of Logistical Engineering University(Project No.YZ13-43703)
文摘Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.
基金Financial support for this work,provided by the Key Basic Research Program of China(Nos.2010CB226800 and 2007CB202200)National Natural Science Foundation of China(No. 50490270)the Innovation Team Development Program of the Ministry of Education of China(No.IRT0656)
文摘Hydrophilic characteristics of rocks are affected by their microscopic pore structures,which clearly change after water absorption.Water absorption tests and scanning electron microscopic(SEM) experiments on rock samples,located at a site in Tibet,China,were carried out Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores.The results show that surface porosities,fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water.There were points of inflection on their water absorption curves.After water absorption of other rocks,surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled.Water absorption curves did not change.Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.
基金financial support from the National Natural Science Foundation of China(Nos.51074166,51104128,51322401 and 51204159)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120095110013)+1 种基金the Science and Technology Projects of Urban and Rural Housing Ministry of Construction of China(No.2011-k3-5)the‘‘Blue Project’’of Jiangsu Province are greatly appreciated
文摘The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone composition and fracture mechanism were studied from a meso-structural per- spective, and the relationship between meso-structure and macro-mechanical characteristics at high temperature was revealed. The findings demonstrated that the fluctuation in diffraction intensity of kao- linite in the mudstone caused the fluctuation in its mechanical properties. The overall structure under- went a phase change around 600℃, which led to the sudden change in the mechanical properties of mudstone samples. When the temperature reached 600 ℃, the crystalline state worsened and kaolinite disappeared; however, some illite was produced, indicating that the chemical reaction of the structure and sudden drop of bearing capacity of the mudstone. Mudst0ne fracturing at high temperature involves mainly intergranular and transgranular fractures, which are typical in micro-brittle tensile failure. Con- sidering the macro-fracture characteristics of mudstone, the results suggested that macro-fracture under external force corresoonds to the meso-fracture.
基金financial support from the National Natural Science Foundation of China (No. 21176250, No. 21566038)
文摘The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electron microscope(SEM), and the possible coke formation processes were investigated as well. The results showed that some of the heavy nonvolatile oil droplets entrained in the flowing oil and gas mixture could possibly deposit or collide on the walls by gravity settling or turbulence diffusion, and then were gradually carbonized into solid coke by condensing and polymerization along with dehydrogenation. Meanwhile some of fine catalyst particles also built up and integrated into the solid coke. The coke can be classified into two types, namely, the hard coke and the soft coke, according to its property, composition and microstructure. The soft coke is formed in the oil and gas mixture's stagnant region where the oil droplets and catalyst particles are freely settled on the wall. The soft coke appears to be loose and contains lots of large catalyst particles. However, the hard coke is formed in the oil and gas mixture's flowing region where the oil droplets and catalyst particles diffuse towards the wall. This kind of coke is nonporous and very hard, which contains a few fine catalyst particles. Therefore, it is clear that the oil and gas mixture not only carries the oil droplets and catalyst particles, but also has the effects on their deposition on the wall, which can influence the composition and characteristics of deposited coke.
基金financially supported by the National Major Special Projects of China (No. 2011ZX05005-002-009HZ)the Natural Science Foundation Project of CQ CSTC of China (No. cstc2012jjA90009)+1 种基金the Research Foundation of Chongqing University of Science & Technology of China (Nos. CK20111312, CK2013Z04)the Program of Educational Reform of Chongqing University of Science & Technology of China (No. 201424).
文摘Based on the techniques of X-ray diffraction analysis, identification of the thin sections of core cast, phys- ical analysis and scanning electron microscopy analysis, this paper studied the reservoir characteristics of the Carboniferous strata in Donghe well No.1 of Tarim region. The results show that the reservoir lithology is mainly the fine-grained quartz sandstone with ferrocalcite and pyrite, mud cement-based, the permeability concentrated in 5-40 × 10-3 μm2, a small part of the high permeability up to 150-327 ×10-3 μm2 and porosity ranged from 10% to 20%. The most part of the reservoirs is low perme- ability with a small part of the layer in moderate-high permeability. The types of reservoir space include intergranular pores, intra particle-molding pores, micro-pores and cracks, which mainly are intergranular pores with the pore diameter of 15-200 μm, 95.5μm on average. And the types of the throats are comolex with the main tvne of constricted l:hroats in this area and large contribution to the permeability.