期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
基于IMQ惯性权重策略的自适应灰狼优化算法 被引量:3
1
作者 于明洋 李婷 许静 《计算机科学》 CSCD 北大核心 2024年第7期354-361,共8页
针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局... 针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局部开发能力;同时,基于Sigmoid指数函数自适应更新个体位置,更好地搜索和优化问题的解空间。采用6个基本函数和29个CEC2017函数对ISGWO进行测试,并与6种常用的算法进行比较,实验结果表明ISGWO具有更优的收敛精度和速度。 展开更多
关键词 IMQ函数 惯性 自适应 灰狼优化算法 收敛速度 寻优精度
在线阅读 下载PDF
利用并行惯性权重OOL-FA的大数据分类 被引量:1
2
作者 钟章生 陈世炉 陈志龙 《计算机工程与设计》 北大核心 2020年第10期2818-2824,共7页
针对现有大数据分类过程中特征选择算法精度较低,影响后续数据分类算法精度的问题,提出基于惯性权重正交反向学习(OOL)-萤火虫算法(FA)的大数据特征选择算法。借助FA的全局搜索能力,以及OOL分别在收敛速度、收敛精度方面的改进能力,实... 针对现有大数据分类过程中特征选择算法精度较低,影响后续数据分类算法精度的问题,提出基于惯性权重正交反向学习(OOL)-萤火虫算法(FA)的大数据特征选择算法。借助FA的全局搜索能力,以及OOL分别在收敛速度、收敛精度方面的改进能力,实现数据特征的快速、精确选择,采用结构感知卷积神经网络对大数据特征进行精确分类。在包含6600万个样本和2000个属性的大数据集上进行实验,实验结果表明,所提算法在分类准确率上具有明显的优势。 展开更多
关键词 大数据分类 惯性权重ool-fa算法 结构感知神经网络 Spark框架 特征选择 数据分类
在线阅读 下载PDF
自适应惯性权重的改进粒子群算法 被引量:87
3
作者 敖永才 师奕兵 +1 位作者 张伟 李焱骏 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第6期874-880,共7页
针对标准PSO算法求解高维非线性问题时存在的大量无效迭代(经过一轮迭代后全局最优位置保持不变),提出了一种自适应惯性权重的改进粒子群算法。基于单次迭代中单粒子运动状态的分析,提出并证明了论点:上一轮迭代适应度值变差的粒子,当... 针对标准PSO算法求解高维非线性问题时存在的大量无效迭代(经过一轮迭代后全局最优位置保持不变),提出了一种自适应惯性权重的改进粒子群算法。基于单次迭代中单粒子运动状态的分析,提出并证明了论点:上一轮迭代适应度值变差的粒子,当前迭代中其惯性分量将引导粒子往适应度值变差的方向运动,导致粒子群体无效迭代次数增加。设计了标准PSO算法改进方案,将上一轮迭代中适应度值变差的全体粒子的惯性权重置为零,消除当前迭代中不利惯性分量对算法收敛的不良影响。采用6个标准测试函数,将该算法与标准PSO算法、固定惯性权重PSO算法和具有领袖的PSO算法进行性能对比分析。试验表明,该改进算法无效迭代次数更少,在收敛率、收敛速度和收敛稳定性上均具有明显的优势。 展开更多
关键词 自适应惯性 收敛性能 惯性分量 无效迭代 粒子群优化算法
在线阅读 下载PDF
惯性权重正弦调整的粒子群算法 被引量:42
4
作者 姜长元 赵曙光 +1 位作者 沈士根 郭力争 《计算机工程与应用》 CSCD 2012年第8期40-42,共3页
通过对标准粒子群算法中惯性权重的分析,提出了一种惯性权重正弦调整的粒子群算法。运用差分方程对粒子速度变化过程和位置变化过程进行分析,得到了粒子群算法的收敛条件。通过对4个典型的函数的测试,实验结果表明该方法在收敛速度和全... 通过对标准粒子群算法中惯性权重的分析,提出了一种惯性权重正弦调整的粒子群算法。运用差分方程对粒子速度变化过程和位置变化过程进行分析,得到了粒子群算法的收敛条件。通过对4个典型的函数的测试,实验结果表明该方法在收敛速度和全局收敛性方面都比标准粒子群算法和随机惯性权重粒子群算法有明显改进。理论分析和仿真实验验证了新算法的正确性和有效性。 展开更多
关键词 粒子群算法 惯性 正弦调整 差分方程
在线阅读 下载PDF
一种动态改变惯性权重的粒子群优化算法 被引量:80
5
作者 王启付 王战江 王书亭 《中国机械工程》 EI CAS CSCD 北大核心 2005年第11期945-948,共4页
针对粒子群优化算法的局限性,提出了一种动态改变惯性权重的粒子群算法,在优化迭代过程中,惯性权重值随粒子的位置和目标函数的性质而变化。函数测试表明,改进后的算法使收敛速度显著加快,而且不易陷入局部极值点。
关键词 粒子群 优化算法 动态惯性 收敛速度
在线阅读 下载PDF
任务调度算法中新的自适应惯性权重计算方法 被引量:28
6
作者 李学俊 徐佳 +1 位作者 朱二周 张以文 《计算机研究与发展》 EI CSCD 北大核心 2016年第9期1990-1999,共10页
粒子群算法(particle swarm optimization,PSO)是解决云计算环境中工作流系统的任务调度优化问题的主流智能算法.然而基于传统自适应惯性权重的粒子群任务调度算法易陷入局部最优,导致调度方案的执行时间与费用较高.因此,通过改进单个... 粒子群算法(particle swarm optimization,PSO)是解决云计算环境中工作流系统的任务调度优化问题的主流智能算法.然而基于传统自适应惯性权重的粒子群任务调度算法易陷入局部最优,导致调度方案的执行时间与费用较高.因此,通过改进单个粒子的成功值计算方法,提出了一种新的自适应惯性权重计算方法 NAIWPSO(new adaptive inertia weight based particle swarm optimization).该方法通过比较每个粒子的适应度与全局最优值,可以更加精确描述粒子状态,进而提高了权重的自适应性.在新惯性权重基础上,提出了一种解决云工作流系统中任务调度优化问题的改进粒子群算法.新权重可以更准确的调整粒子速度,使算法更好地平衡粒子全局与局部搜索,避免陷入局部最优,获得执行费用更优的调度方案.实验表明,与5种已有惯性权重算法比较,新算法收敛稳定、适应度最低、执行费用平均减少18%. 展开更多
关键词 云计算 工作流 任务调度 粒子群算法 惯性
在线阅读 下载PDF
粒子群优化算法中惯性权重的研究进展 被引量:28
7
作者 田雨波 朱人杰 薛权祥 《计算机工程与应用》 CSCD 北大核心 2008年第23期39-41,共3页
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法。惯性权重是粒子群算法中非常重要的参数,可以用来控制算法的开发和探索能力。简单介绍了标准粒子群优化算法的基本原理,全面综... 粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法。惯性权重是粒子群算法中非常重要的参数,可以用来控制算法的开发和探索能力。简单介绍了标准粒子群优化算法的基本原理,全面综述了现有文献中对惯性权重的研究进展情况。 展开更多
关键词 粒子群优化 惯性 优化算法
在线阅读 下载PDF
一种动态调整惯性权重的自适应蝙蝠算法 被引量:25
8
作者 裴宇航 刘景森 李煜 《计算机科学》 CSCD 北大核心 2017年第6期240-244,共5页
为了加快蝙蝠算法的收敛速度并提高寻优精度,提出一种动态调整惯性权重的自适应蝙蝠算法。该算法在速度公式中加入惯性权重,并采用一种服从均匀分布和贝塔分布的随机调整策略,动态地调整惯性权重的大小,以加快算法的收敛速度。另外,引... 为了加快蝙蝠算法的收敛速度并提高寻优精度,提出一种动态调整惯性权重的自适应蝙蝠算法。该算法在速度公式中加入惯性权重,并采用一种服从均匀分布和贝塔分布的随机调整策略,动态地调整惯性权重的大小,以加快算法的收敛速度。另外,引入了速度纠正因子,在每次迭代时,算法可根据当前种群的迭代次数动态地约束每一代蝙蝠的移动步长,从而使算法具有一定的自适应性。仿真实验结果表明,改进后的算法的寻优性能显著提高,具有较快的收敛速度和较高的寻优精度。 展开更多
关键词 蝙蝠算法 惯性 速度纠正因子 自适应
在线阅读 下载PDF
粒子群算法的惯性权重模型在水库防洪调度中的应用 被引量:13
9
作者 袁鹏 常江 +1 位作者 朱兵 李彬 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2006年第5期54-57,共4页
介绍了集群智能优化算法PSO和其改进算法惯性权重模型,给出了PSO算法原理和具体的求解步骤,并将其应用于南盘江上游水库洪水调度计算,结果合理,满足防洪调度要求,证明了粒子群优化算法在水库洪水调度上可以有较好的应用,为水库防洪优化... 介绍了集群智能优化算法PSO和其改进算法惯性权重模型,给出了PSO算法原理和具体的求解步骤,并将其应用于南盘江上游水库洪水调度计算,结果合理,满足防洪调度要求,证明了粒子群优化算法在水库洪水调度上可以有较好的应用,为水库防洪优化调度提供了一条新的途径。 展开更多
关键词 粒子群优化算法 惯性模型 防洪调度
在线阅读 下载PDF
粒子群优化算法中惯性权重综述 被引量:39
10
作者 周俊 陈璟华 +1 位作者 刘国祥 许伟龙 《广东电力》 2013年第7期6-12,共7页
粒子群优化(particle swarm optimization,PSO)算法是基于鸟群觅食行为的一种新型的群体智能算法,而惯性权重是PSO算法中一个极其重要的参数,其值的选取直接关系粒子在寻优过程中的开发能力和探索能力。在介绍PSO算法的基本原理的基础上... 粒子群优化(particle swarm optimization,PSO)算法是基于鸟群觅食行为的一种新型的群体智能算法,而惯性权重是PSO算法中一个极其重要的参数,其值的选取直接关系粒子在寻优过程中的开发能力和探索能力。在介绍PSO算法的基本原理的基础上,分析惯性权重对粒子群优化算法在收敛性方面的影响,综述了现有文献对惯性权重的研究进展,并评述了各种惯性权重取值策略所取得的研究成果和存在的不足之处。 展开更多
关键词 粒子群优化(PSO)算法 惯性 智能算法 收敛性 开发能力 探索能力
在线阅读 下载PDF
基于Sigmoid惯性权重自适应调整的粒子群优化算法 被引量:16
11
作者 黄利 杜伟伟 丁立新 《计算机应用研究》 CSCD 北大核心 2012年第1期32-34,共3页
提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整... 提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整方法。通过三个典型的多峰函数,将提出的算法(AS-PSO)与标准粒子群优化算法(SPSO)和基于Sigmoid函数的粒子群优化算法(S-PSO)进行了仿真分析比较,结果表明,AS-PSO算法相比其他两种算法,全局寻优能力更强,在一定程度上解决了收敛性能与全局寻优能力之间的矛盾。 展开更多
关键词 粒子群优化算法 早熟 惯性 适应度 自适应
在线阅读 下载PDF
微粒群算法中惯性权重的调整策略 被引量:64
12
作者 胡建秀 曾建潮 《计算机工程》 CAS CSCD 北大核心 2007年第11期193-195,共3页
惯性权重是微粒群算法中的关键参数,可以平衡算法全局搜索能力和局部搜索能力的关系,提高算法的收敛性能。该文分析了惯性权重对微粒群算法收敛性能的影响,为了进一步提高算法的全局最优性,提出了几种对惯性权重的调整策略。通过对4个... 惯性权重是微粒群算法中的关键参数,可以平衡算法全局搜索能力和局部搜索能力的关系,提高算法的收敛性能。该文分析了惯性权重对微粒群算法收敛性能的影响,为了进一步提高算法的全局最优性,提出了几种对惯性权重的调整策略。通过对4个测试函数的仿真实验,验证了这些策略的可行性,表明这些策略能够简便高效地提高算法的全局收敛性和收敛速度。 展开更多
关键词 微粒群算法 惯性 全局最优性
在线阅读 下载PDF
惯性权重粒子群算法模型收敛性分析及参数选择 被引量:33
13
作者 孙湘 周大为 张希望 《计算机工程与设计》 CSCD 北大核心 2010年第18期4068-4071,共4页
为提高粒子群算法的收敛性,基于动力系统的稳定性理论分析了带有惯性权重的粒子群算法模型的收敛性,提出了在算法模型收敛条件下惯性权重w和加速系数c的参数约束关系。使用4个测试函数对具有所提参数约束关系的惯性权重粒子群算法模型... 为提高粒子群算法的收敛性,基于动力系统的稳定性理论分析了带有惯性权重的粒子群算法模型的收敛性,提出了在算法模型收敛条件下惯性权重w和加速系数c的参数约束关系。使用4个测试函数对具有所提参数约束关系的惯性权重粒子群算法模型和典型参数取值惯性权重粒子群算法模型进行了对比仿真研究,实验结果表明,具有提出的参数约束关系的惯性权重粒子群算法模型在收敛性方面具有显著优越性。 展开更多
关键词 粒子群算法 动力系统稳定性理论 惯性 加速系数 收敛性
在线阅读 下载PDF
一种非线性改变惯性权重的粒子群算法 被引量:61
14
作者 王丽 王晓凯 《计算机工程与应用》 CSCD 北大核心 2007年第4期47-48,92,共3页
引入递减指数和迭代阈值对基本粒子群算法中线性递减权策略进行了改进,在优化迭代过程中,惯性权重随当前迭代次数、指数递减率和迭代阈值非线性变化。对三种具有代表性的测试函数进行了仿真实验,并与基本粒子群算法以及其他改进的粒子... 引入递减指数和迭代阈值对基本粒子群算法中线性递减权策略进行了改进,在优化迭代过程中,惯性权重随当前迭代次数、指数递减率和迭代阈值非线性变化。对三种具有代表性的测试函数进行了仿真实验,并与基本粒子群算法以及其他改进的粒子群算法进行了比较,结果表明,文中所提的改进粒子群算法在搜优精度、收敛速度以及稳定性等方面有明显优势。 展开更多
关键词 粒子群算法 惯性 递减指数 迭代阈值
在线阅读 下载PDF
粒子群算法中惯性权重的实验与分析 被引量:88
15
作者 王俊伟 汪定伟 《系统工程学报》 CSCD 北大核心 2005年第2期194-198,共5页
简要介绍了粒子群算法(PSO),对算法中的重要参数惯性权重进行了系统的实验,分析了固定权重与时变权重的选择问题,并从问题依赖性、种群大小和拓扑结构等方面详细分析了惯性权重对于算法性能的影响.结果表明,惯性权重的问题依赖性较小,... 简要介绍了粒子群算法(PSO),对算法中的重要参数惯性权重进行了系统的实验,分析了固定权重与时变权重的选择问题,并从问题依赖性、种群大小和拓扑结构等方面详细分析了惯性权重对于算法性能的影响.结果表明,惯性权重的问题依赖性较小,随着种群的增大,其取值应适当减小,局部版本下,惯性权重的选择具有更大的自由度. 展开更多
关键词 粒子群算法 进化计算 惯性
在线阅读 下载PDF
基于随机惯性权重的简化粒子群优化算法 被引量:74
16
作者 赵志刚 黄树运 王伟倩 《计算机应用研究》 CSCD 北大核心 2014年第2期361-363,391,共4页
针对标准粒子群优化算法易出现早熟收敛、搜索速度慢及寻优精度低等缺陷,提出一种基于随机惯性权重的简化粒子群优化算法。算法采用去除速度项的粒子群简化结构,通过随机分布的方式获取惯性权重提高新算法的局部搜索和全局搜索能力,并... 针对标准粒子群优化算法易出现早熟收敛、搜索速度慢及寻优精度低等缺陷,提出一种基于随机惯性权重的简化粒子群优化算法。算法采用去除速度项的粒子群简化结构,通过随机分布的方式获取惯性权重提高新算法的局部搜索和全局搜索能力,并且学习因子采用异步变化的策略来改善粒子的学习能力。考虑到个体之间的相互影响关系,每个粒子的个体极值用所有粒子个体极值的平均值代替。通过几个典型测试函数仿真及F-检验结果表明,提出的算法在搜索速度、收敛精度、鲁棒性方面较已有改进算法有了显著提高,并且具有摆脱陷入局部最优解的能力。 展开更多
关键词 粒子群优化算法 简化粒子群 惯性 学习因子 随机分布 异步变化
在线阅读 下载PDF
集成随机惯性权重和差分变异操作的樽海鞘群算法 被引量:10
17
作者 张志强 鲁晓锋 +1 位作者 隋连升 李军怀 《计算机科学》 CSCD 北大核心 2020年第8期297-301,共5页
为了提高樽海鞘群算法(Salp Swarm Algorithm,SSA)的收敛速度、计算精度和全局优化能力,在分析总结粒子群优化(Particle Swarm Optimization,PSO)和差分进化(Differential Evolution,DE)算法相关研究成果后,提出了一种集成PSO算法随机... 为了提高樽海鞘群算法(Salp Swarm Algorithm,SSA)的收敛速度、计算精度和全局优化能力,在分析总结粒子群优化(Particle Swarm Optimization,PSO)和差分进化(Differential Evolution,DE)算法相关研究成果后,提出了一种集成PSO算法随机惯性权重和DE算法差分变异操作的改进SSA算法——iSSA。首先,将PSO算法的随机惯性权重引入SSA算法的追随者位置更新公式中,用于增强和平衡SSA算法的勘探与开发能力;其次,用DE算法的变异操作替代SSA算法的领导者位置更新操作,以提高SSA算法的收敛速度和计算精度。为了检验随机惯性权重和差分变异操作对SSA算法的改进效果,在多个高维基准函数上进行了仿真实验,并与其他改进SSA算法进行了比较。实验结果及分析表明,与SSA算法和两个典型的改进SSA算法(ESSA和CASSA)相比,集成随机惯性权重和差分变异操作的iSSA算法,在没有增加算法时间复杂度的情况下,显著地提高了SSA算法的收敛速度、计算精度和全局优化能力,并且优于ESSA算法和CASSA算法。 展开更多
关键词 樽海鞘群算法 群体智能 粒子群优化 随机惯性 差分进化 变异操作
在线阅读 下载PDF
一种动态调整惯性权重的粒子群优化算法 被引量:56
18
作者 董红斌 李冬锦 张小平 《计算机科学》 CSCD 北大核心 2018年第2期98-102,139,共6页
针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖于参数的选取等缺点,提出了一种非线性指数惯性权重粒子群优化算法(Exponential Inertia Weight in Particle Swarm Optimization,EIW-PSO)。在每次迭代的过程中,采用粒子... 针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖于参数的选取等缺点,提出了一种非线性指数惯性权重粒子群优化算法(Exponential Inertia Weight in Particle Swarm Optimization,EIW-PSO)。在每次迭代的过程中,采用粒子最大适应值和最小适应值的指数函数来动态调整算法中的惯性权重,更有利于算法在寻优过程中跳出局部最优;同时,引入随机因子以确保种群的多样性,使粒子更快地收敛到全局最优位置。为了验证该算法的寻优性能,通过8个基准测试函数将标准PSO、线性递减惯性权重LDIW-PSO、均值自适应惯性权重MAW-PSO在不同维度和种群规模下进行测试比较。实验结果表明,提出的EIW-PSO算法具有更快的收敛速度和更高的求解精度。 展开更多
关键词 粒子群优化算法 动态调整 惯性 指数函数
在线阅读 下载PDF
动态改变惯性权重的新模式粒子群算法 被引量:10
19
作者 杜江 袁中华 王景芹 《安徽大学学报(自然科学版)》 CAS 北大核心 2018年第2期60-66,共7页
针对标准粒子群算法在求解复杂优化问题时易陷入局部最优、收敛精度不高和收敛成功率低的不足,提出了一种改进的粒子群算法.通过算法所处的迭代阶段和粒子的分布情况动态改变惯性权重的值,并根据每个粒子的更新情况调整其飞行的起点.最... 针对标准粒子群算法在求解复杂优化问题时易陷入局部最优、收敛精度不高和收敛成功率低的不足,提出了一种改进的粒子群算法.通过算法所处的迭代阶段和粒子的分布情况动态改变惯性权重的值,并根据每个粒子的更新情况调整其飞行的起点.最后4个测试函数仿真结果表明,在求解复杂优化问题时,改进后算法的收敛精度和收敛成功率均有明显提高. 展开更多
关键词 群体智能 粒子群算法 惯性 动态调整 新模式
在线阅读 下载PDF
基于惯性权重对数递减的粒子群优化算法 被引量:37
20
作者 戴文智 杨新乐 《计算机工程与应用》 CSCD 北大核心 2015年第17期14-19,52,共7页
针对粒子群算法收敛速度慢和易陷入局部最优的问题,提出了基于惯性权重对数递减的粒子群算法,并引入对数调整因子,对数调整因子的不同取值保证了算法搜索成功率。选取八种典型函数分别进行给定迭代次数和给定精度的仿真实验,并与标准PS... 针对粒子群算法收敛速度慢和易陷入局部最优的问题,提出了基于惯性权重对数递减的粒子群算法,并引入对数调整因子,对数调整因子的不同取值保证了算法搜索成功率。选取八种典型函数分别进行给定迭代次数和给定精度的仿真实验,并与标准PSO算法、惯性权重线性递减PSO算法、惯性权重高斯函数递减PSO算法进行比较。测试结果表明,该策略可以简便高效地提高算法的全局收敛性和收敛速度,并且具有较好的稳定性。求解大多数优化问题时,即使不引入对数调整因子新算法就可以获得较好的效果。 展开更多
关键词 粒子群优化算法 惯性 对数递减 对数调整因子
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部