Thrombospondin 4(THBS4;TSP4),a crucial component of the extracellular matrix(ECM),serves as an important regulator of tissue homeostasis and various pathophysiological processes.As a member of the evolutionarily conse...Thrombospondin 4(THBS4;TSP4),a crucial component of the extracellular matrix(ECM),serves as an important regulator of tissue homeostasis and various pathophysiological processes.As a member of the evolutionarily conserved thrombospondin family,THBS4 is a multidomain adhesive glycoprotein characterized by six distinct structural domains that mediate its diverse biological functions.Through dynamic interactions with various ECM components,THBS4 plays pivotal roles in cell adhesion,proliferation,inflammation regulation,and tissue remodeling,establishing it as a key modulator of microenvironmental organization.The transcription and translation of THBS4 gene,as well as the activity of the THBS4 protein,are tightly regulated by multiple signaling pathways and extracellular cues.Positive regulators of THBS4 include transforming growth factorβ(TGF-β),interferonγ(IFNγ),granulocyte-macrophage colony-stimulating factor(GM-CSF),bone morphogenetic proteins(BMP12/13),and other regulatory factors(such as B4GALNT1,ITGA2/ITGB1,PDGFRβ,etc.),which upregulate THBS4 at the mRNA and/or protein level.Conversely,oxidized low-density lipoprotein(OXLDL)acts as a potent negative regulator of THBS4.This intricate regulatory network ensures precise spatial and temporal control of THBS4 expression in response to diverse physiological and pathological stimuli.Functionally,THBS4 acts as a critical signaling hub,influencing multiple downstream pathways essential for cellular behavior and tissue homeostasis.The best-characterized pathways include:(1)the PI3K/AKT/mTOR axis,which THBS4 modulates through both direct and indirect interactions with integrins and growth factor receptors;(2)Wnt/β-catenin signaling,where THBS4 functions as either an activator or inhibitor depending on the cellular context;(3)the suppression of DBET/TRIM69,contributing to its diverse regulatory roles.These signaling connections position THBS4 as a master regulator of cellular responses to microenvironmental changes.Substantial evidence links aberrant THBS4 expression to a range of pathological conditions,including neoplastic diseases,cardiovascular disorders,fibrotic conditions,neurodegenerative diseases,musculoskeletal disorders,and atopic dermatitis.In cancer biology,THBS4 exhibits context-dependent roles,functioning either as a tumor suppressor or promoter depending on the tumor type and microenvironment.In the cardiovascular system,THBS4 contributes to both adaptive remodeling and maladaptive fibrotic responses.Its involvement in fibrotic diseases arises from its ability to regulate ECM deposition and turnover.The diagnostic and therapeutic potential of THBS4 is particularly promising in oncology and cardiovascular medicine.As a biomarker,THBS4 expression patterns correlate significantly with disease progression and patient outcomes.Therapeutically,targeting THBS4-mediated pathways offers novel opportunities for precision medicine approaches,including anti-fibrotic therapies,modulation of the tumor microenvironment,and enhancement of tissue repair.This comprehensive review systematically explores three key aspects of THBS4 research:(1)the fundamental biological functions of THBS4 in ECM organization;(2)its mechanistic involvement in various disease pathologies;(3)its emerging potential as both a diagnostic biomarker and therapeutic target.By integrating recent insights from molecular studies,animal models,and clinical investigations,this review provides a framework for understanding the multifaceted roles of THBS4 in health and disease.The synthesis of current knowledge highlights critical research gaps and future directions for exploring THBS4-targeted interventions across multiple disease contexts.Given its unique position at the intersection of ECM biology and cellular signaling,THBS4 represents a promising frontier for the development of novel diagnostic tools and therapeutic strategies in precision medicine.展开更多
文摘Thrombospondin 4(THBS4;TSP4),a crucial component of the extracellular matrix(ECM),serves as an important regulator of tissue homeostasis and various pathophysiological processes.As a member of the evolutionarily conserved thrombospondin family,THBS4 is a multidomain adhesive glycoprotein characterized by six distinct structural domains that mediate its diverse biological functions.Through dynamic interactions with various ECM components,THBS4 plays pivotal roles in cell adhesion,proliferation,inflammation regulation,and tissue remodeling,establishing it as a key modulator of microenvironmental organization.The transcription and translation of THBS4 gene,as well as the activity of the THBS4 protein,are tightly regulated by multiple signaling pathways and extracellular cues.Positive regulators of THBS4 include transforming growth factorβ(TGF-β),interferonγ(IFNγ),granulocyte-macrophage colony-stimulating factor(GM-CSF),bone morphogenetic proteins(BMP12/13),and other regulatory factors(such as B4GALNT1,ITGA2/ITGB1,PDGFRβ,etc.),which upregulate THBS4 at the mRNA and/or protein level.Conversely,oxidized low-density lipoprotein(OXLDL)acts as a potent negative regulator of THBS4.This intricate regulatory network ensures precise spatial and temporal control of THBS4 expression in response to diverse physiological and pathological stimuli.Functionally,THBS4 acts as a critical signaling hub,influencing multiple downstream pathways essential for cellular behavior and tissue homeostasis.The best-characterized pathways include:(1)the PI3K/AKT/mTOR axis,which THBS4 modulates through both direct and indirect interactions with integrins and growth factor receptors;(2)Wnt/β-catenin signaling,where THBS4 functions as either an activator or inhibitor depending on the cellular context;(3)the suppression of DBET/TRIM69,contributing to its diverse regulatory roles.These signaling connections position THBS4 as a master regulator of cellular responses to microenvironmental changes.Substantial evidence links aberrant THBS4 expression to a range of pathological conditions,including neoplastic diseases,cardiovascular disorders,fibrotic conditions,neurodegenerative diseases,musculoskeletal disorders,and atopic dermatitis.In cancer biology,THBS4 exhibits context-dependent roles,functioning either as a tumor suppressor or promoter depending on the tumor type and microenvironment.In the cardiovascular system,THBS4 contributes to both adaptive remodeling and maladaptive fibrotic responses.Its involvement in fibrotic diseases arises from its ability to regulate ECM deposition and turnover.The diagnostic and therapeutic potential of THBS4 is particularly promising in oncology and cardiovascular medicine.As a biomarker,THBS4 expression patterns correlate significantly with disease progression and patient outcomes.Therapeutically,targeting THBS4-mediated pathways offers novel opportunities for precision medicine approaches,including anti-fibrotic therapies,modulation of the tumor microenvironment,and enhancement of tissue repair.This comprehensive review systematically explores three key aspects of THBS4 research:(1)the fundamental biological functions of THBS4 in ECM organization;(2)its mechanistic involvement in various disease pathologies;(3)its emerging potential as both a diagnostic biomarker and therapeutic target.By integrating recent insights from molecular studies,animal models,and clinical investigations,this review provides a framework for understanding the multifaceted roles of THBS4 in health and disease.The synthesis of current knowledge highlights critical research gaps and future directions for exploring THBS4-targeted interventions across multiple disease contexts.Given its unique position at the intersection of ECM biology and cellular signaling,THBS4 represents a promising frontier for the development of novel diagnostic tools and therapeutic strategies in precision medicine.