期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
竞争型径向基过程神经网络时序分类器 被引量:3
1
作者 葛利 印桂生 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第6期741-744,共4页
针对时序分类问题,提出一种竞争型径向基过程神经网络时序分类器.给出了复合竞争过程神经元单元的定义,引入复合竞争过程神经元隐层,利用竞争型径向基过程神经网络输入为时变函数的特点,由复合竞争过程神经元单元完成对过程式输入信息... 针对时序分类问题,提出一种竞争型径向基过程神经网络时序分类器.给出了复合竞争过程神经元单元的定义,引入复合竞争过程神经元隐层,利用竞争型径向基过程神经网络输入为时变函数的特点,由复合竞争过程神经元单元完成对过程式输入信息的模式匹配和时空聚合运算,给出了具体学习算法,省去了输出层线性连接权的计算,简化了网络结构和训练过程,提高了网络泛化能力.最后以UCI数据集多变量时序分类问题验证了分类器的有效性. 展开更多
关键词 时序分类器 竞争型神经网络 径向 时空聚合运算 过程神经网络
在线阅读 下载PDF
基于Zernike矩特征的FCM-RBF神经网络图像分类器 被引量:8
2
作者 倪鹏 黄蔚 +1 位作者 吕巍 姚禹 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第6期1284-1288,共5页
针对交通监控图像识别精度较差的问题,设计一种基于径向基(radial-basis)函数神经网络的图像分类器.该分类器利用Zernike矩噪声敏感度较小、形状特征稳定性好的特点,构建四阶矩的特征向量,用于特征提取;利用自适应模糊聚类方法,解决径... 针对交通监控图像识别精度较差的问题,设计一种基于径向基(radial-basis)函数神经网络的图像分类器.该分类器利用Zernike矩噪声敏感度较小、形状特征稳定性好的特点,构建四阶矩的特征向量,用于特征提取;利用自适应模糊聚类方法,解决径向基函数神经网络隐层节点数不确定的问题.仿真分析表明,该分类器与基于改进的快速模糊C均值聚类算法的Back Propagation网络分类器和径向基函数神经网络分类器相比具有更高的识别率,与改进的粒子群优化模糊C均值聚类算法的径向基函数神经网络分类器相比具有相近的识别率,但其计算复杂度较低.仿真实验结果表明,该方法具有较好的分类能力及较高的计算效率. 展开更多
关键词 ZERNIKE 模糊 C 均值 径向神经网络 图像分类器
在线阅读 下载PDF
基于径向基概率神经网络的输电导线缺陷状态识别 被引量:37
3
作者 黄新波 章小玲 +3 位作者 张烨 杨璐雅 刘成 李文静 《电力系统自动化》 EI CSCD 北大核心 2020年第3期201-210,共10页
输电导线作为承担电能传输任务的重要部件,及时发现其本体缺陷对指导维修避免重大电力事故的发生具有重要意义。考虑到无人机巡检中输电导线背景的复杂性和导线表面缺陷检测的困难度,提出一种基于径向基概率神经网络的输电导线缺陷状态... 输电导线作为承担电能传输任务的重要部件,及时发现其本体缺陷对指导维修避免重大电力事故的发生具有重要意义。考虑到无人机巡检中输电导线背景的复杂性和导线表面缺陷检测的困难度,提出一种基于径向基概率神经网络的输电导线缺陷状态识别方法。首先,依次采用加权色差法、最大类间方差法以及形态学滤波实现复杂背景下输电导线的准确分割。其次,将分割出的导线区域等距划分为10个导线子图像,通过Gabor滤波器获得输电导线8个角度、5个尺度的40幅纹理增强子图像,提取各个子图像的粗糙度、对比度和方向度3个纹理特征量,结合特征方差比筛选出10个强纹理特征;最后,将10个强纹理特征量作为径向基概率神经网络的输入,完成输电导线缺陷状态的识别。实验结果表明所提方法可以实现复杂背景下输电导线快速分割与缺陷状态的准确识别,为无人机巡检中输电导线的运行状态检测提供了新的思路。 展开更多
关键词 输电导线 加权色差法 图像分割 纹理特征提取 径向概率神经网络
在线阅读 下载PDF
基于径向基函数概率神经网络的心律失常自动识别 被引量:15
4
作者 陈重阳 蔡萍 +1 位作者 施文康 郭能武 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第11期1475-1477,共3页
讨论了基于径向基函数 ( RBF)的概率神经网络的基本网络结构和网络的学习和运行过程 ,并且与 BP算法的径向基神经网络进行了对比 ,同时也测试了网络的容错能力 .结果表明 ,基于RBF的概率神经网络 ,学习速度大大提高 ,同时减小了 BP陷入... 讨论了基于径向基函数 ( RBF)的概率神经网络的基本网络结构和网络的学习和运行过程 ,并且与 BP算法的径向基神经网络进行了对比 ,同时也测试了网络的容错能力 .结果表明 ,基于RBF的概率神经网络 ,学习速度大大提高 ,同时减小了 BP陷入局部极小的问题 ,有一定的抗噪声能力 .基于 展开更多
关键词 概率神经网络 心律失常 径向函数 心电信号
在线阅读 下载PDF
应用径向基概率神经网络研究地震滑坡 被引量:14
5
作者 陈晓利 赵健 叶洪 《地震地质》 EI CSCD 北大核心 2006年第3期430-440,共11页
地震滑坡是一种有着严重危害的次生地震灾害形式,形成机制复杂,涉及因素较多。地震滑坡在空间上不是完全随机分布的,换言之,地震滑坡的影响因素和它的分布规律之间存在着相关性。利用径向基概率神经网络自学习的特性,通过对样本训练、检... 地震滑坡是一种有着严重危害的次生地震灾害形式,形成机制复杂,涉及因素较多。地震滑坡在空间上不是完全随机分布的,换言之,地震滑坡的影响因素和它的分布规律之间存在着相关性。利用径向基概率神经网络自学习的特性,通过对样本训练、检测,得到一个稳定可靠的模式识别网络,并用其对工作区进行潜在地震滑坡危险性区划,通过结果对比,在本例中识别精度达到89.9%以上,显示是一次有效的尝试。 展开更多
关键词 径向概率神经网络 地震滑坡 GIS 危险性预测
在线阅读 下载PDF
利用红外图像特征和径向基概率神经网络识别不同湿度条件下绝缘子的污秽等级 被引量:59
6
作者 何洪英 姚建刚 +1 位作者 蒋正龙 李伟伟 《中国电机工程学报》 EI CSCD 北大核心 2006年第8期117-123,共7页
提出一种利用污秽绝缘子红外图像特征和径向基概率神经网络(RBPNN)来检测不同湿度条件下自然污秽绝缘子污秽等级的新方法。采用修正后的阿尔法滤波器和基于波谷的图像分割方法对绝缘子红外图像进行预处理。提取了不同湿度条件下的图像背... 提出一种利用污秽绝缘子红外图像特征和径向基概率神经网络(RBPNN)来检测不同湿度条件下自然污秽绝缘子污秽等级的新方法。采用修正后的阿尔法滤波器和基于波谷的图像分割方法对绝缘子红外图像进行预处理。提取了不同湿度条件下的图像背景(周围环境)的平均温度、绝缘子盘面区域的最高温度、绝缘子盘面区域的平均温度、绝缘子盘面温度分布的方差值作为反映污秽等级的4个特征量。通过RBPNN建立了湿度及污秽特征与污秽等级之间的映射关系,并利用训练好的RBPNN识别绝缘子污秽等级;另外提出一种梯度算法与随机性方法相结合的算法来确定RBPNN的隐中心、宽度控制参数及权值矩阵。实验结果证明该方法能有效识别不同湿度条件下绝缘子的污秽等级。 展开更多
关键词 污秽绝缘子红外图像特征 修正后的阿尔法滤波器 图像分割 径向概率神经网络 梯度算法与随机性方法 污秽级别识别
在线阅读 下载PDF
基于径向基概率神经网络的高压加热器故障诊断 被引量:6
7
作者 马良玉 马杏斋 +1 位作者 冯志杰 张雷 《华北电力大学学报(自然科学版)》 CAS 北大核心 2007年第5期81-84,共4页
应用径向基概率神经网络实现高压加热器的故障诊断。介绍了RBPNN网络的结构和学习算法;总结了高加的故障集、征兆集和故障特征数据。在Matlab环境下给出了高加故障诊断的具体实例,表明该方法是一种可行有效的高加故障诊断方法。
关键词 高压加热器 故障诊断 径向概率神经网络 MATLAB
在线阅读 下载PDF
径向基概率神经网络的混合结构优化算法 被引量:14
8
作者 赵温波 杨鹭怡 王立明 《系统仿真学报》 CAS CSCD 2004年第10期2175-2180,2184,共7页
使用递归正交最小二乘算法(ROLSA)优选径向基概率神经网络(RBPNN)的隐中心矢量,微遗传算法(μGA)用于求解RBPNN最优核函数控制参数,并同ROLSA相结合(ROLS-μGA)来优化RBPNN的全结构(优选最优控制参数及隐中心矢量)。实验结果表明,ROLS-... 使用递归正交最小二乘算法(ROLSA)优选径向基概率神经网络(RBPNN)的隐中心矢量,微遗传算法(μGA)用于求解RBPNN最优核函数控制参数,并同ROLSA相结合(ROLS-μGA)来优化RBPNN的全结构(优选最优控制参数及隐中心矢量)。实验结果表明,ROLS-μGA具有很好的优化效率,而且优化后的RBPNN的推广性能也没有下降。实验还验证了ROLS-μGA对径向基函数网络(RBFNN)也有很好的适用性。 展开更多
关键词 径向概率神经网络 结构优化 递归正交最小二乘算法 微遗传算法
在线阅读 下载PDF
径向基概率神经网络结构的遗传优化 被引量:6
9
作者 赵温波 黄德双 郭璘 《中国科学技术大学学报》 CAS CSCD 北大核心 2003年第6期733-741,共9页
运用遗传算法 (GA)来优化设计径向基概率神经网络 (RBPNN)结构 ,优选了隐中心矢量和优化求取对应的核函数控制参数 .提出的染色体编码方式 ,充分体现了所选隐中心矢量在模式样本空间中的数量及位置分布 ,同时还包含了相适应的核函数控... 运用遗传算法 (GA)来优化设计径向基概率神经网络 (RBPNN)结构 ,优选了隐中心矢量和优化求取对应的核函数控制参数 .提出的染色体编码方式 ,充分体现了所选隐中心矢量在模式样本空间中的数量及位置分布 ,同时还包含了相适应的核函数控制参数信息 .新构造的适应度函数不仅有效地控制了网络输出的误差精度 ,而且还能够使得RBPNN结构优化趋于最简 .将IRIS分类问题用于检验该算法的有效性并与ROLSA和MKM进行了比较研究 ,结果表明 ,GA的优化效率最高 。 展开更多
关键词 遗传算法 径向概率神经网络 隐中心矢量 结构优化
在线阅读 下载PDF
径向基函数神经网络的分类机理 被引量:7
10
作者 赵群 保铮 《通信学报》 EI CSCD 北大核心 1996年第2期86-93,共8页
本文研究了径向基函数网络(RBFN)的分类机理问题。在Ruck工作的基础上,通过与传统的基于Parzen窗估计核分类器做类比,本文从模式分类机理入手,分析了RBFN使用正、负两类训练样本来估计判别函数的特点,指出它优... 本文研究了径向基函数网络(RBFN)的分类机理问题。在Ruck工作的基础上,通过与传统的基于Parzen窗估计核分类器做类比,本文从模式分类机理入手,分析了RBFN使用正、负两类训练样本来估计判别函数的特点,指出它优于核分类器,并讨论了相应情况下RBFN输出层连接权、模式分类判决域的特点。最后用多类模式分类的结果对上述理论进行了验证。 展开更多
关键词 神经网络 径向函数 模式分类 分类器
在线阅读 下载PDF
基于遗传优化径向基概率神经网络的岩性识别应用 被引量:8
11
作者 靳玉萍 李保霖 《计算机应用》 CSCD 北大核心 2013年第2期353-356,共4页
岩性识别是测井数据解释中最关键的一环,但传统的岩性识别方法解释效率慢,精度低,受人为因素影响大。为此,提出一种遗传优化径向基概率神经网络(RBPNN)的岩性识别方法。该方法融合概率神经网络(PNN)和径向基函数神经网络(RBFNN)的优势... 岩性识别是测井数据解释中最关键的一环,但传统的岩性识别方法解释效率慢,精度低,受人为因素影响大。为此,提出一种遗传优化径向基概率神经网络(RBPNN)的岩性识别方法。该方法融合概率神经网络(PNN)和径向基函数神经网络(RBFNN)的优势来构造RBPNN,采用遗传算法搜索使得RBPNN训练法误差最小的最优隐中心矢量和相匹配的核函数控制参数,优化网络结构,提高收敛速度与精度,形成全结构遗传优化的RBPNN模型。实例应用表明,基于遗传优化RBPNN的岩性识别能够达到工程实际应用的规范标准,且是可行有效的,能够为油田地质勘探领域的岩性识别提供科学的理论支持与依靠。 展开更多
关键词 岩性识别 径向概率神经网络 遗传算法
在线阅读 下载PDF
基于改进递阶遗传算法的RBF神经网络分类器 被引量:3
12
作者 薛富强 葛临东 王彬 《系统仿真学报》 CAS CSCD 北大核心 2010年第2期399-402,共4页
针对通信信号调制类型识别,应用递阶遗传算法动态确定径向基神经网络分类器结构。建立了新的适应度函数,该函数简单直观,待定参数少;同时结合相关联赛选择方法对选择算子进行了改进,增加了种群进化的多样性,避免了早熟收敛。仿真结果表... 针对通信信号调制类型识别,应用递阶遗传算法动态确定径向基神经网络分类器结构。建立了新的适应度函数,该函数简单直观,待定参数少;同时结合相关联赛选择方法对选择算子进行了改进,增加了种群进化的多样性,避免了早熟收敛。仿真结果表明改进算法能更好地确定分类器结构,分类准确率更高。 展开更多
关键词 递阶遗传算法 径向神经网络 分类器 适应度函数
在线阅读 下载PDF
基于径向基概率神经网络的工程图纸图形符号识别 被引量:4
13
作者 翟传敏 杜吉祥 黄飞 《智能系统学报》 2006年第1期88-91,共4页
基于径向基概率神经网络,提出一种扫描工程图纸图像分割后的图形符号识别方法.针对已分割的扫描工程图纸图形符号图像,首先进行二值化处理,然后对二值图形符号图像进行Hu不变矩特征提取,再使用一种新型的径向基概率神经网络进行分类,从... 基于径向基概率神经网络,提出一种扫描工程图纸图像分割后的图形符号识别方法.针对已分割的扫描工程图纸图形符号图像,首先进行二值化处理,然后对二值图形符号图像进行Hu不变矩特征提取,再使用一种新型的径向基概率神经网络进行分类,从而实现图像识别.为加快径向基概率神经网络的收敛速度,采用递归最小二乘算法进行训练.实验结果表明,径向基概率神经网络在识别性能与速度等方面非常适合于工程图纸的图形符号识别. 展开更多
关键词 径向概率神经网络 网形符号 工程图纸识别
在线阅读 下载PDF
最大绝对误差结合微遗传算法优化径向基概率神经网络 被引量:3
14
作者 赵温波 王立明 黄德双 《计算机研究与发展》 EI CSCD 北大核心 2005年第2期179-187,共9页
使用最大绝对误差算法 (MAEA)优选径向基概率神经网络 (RBPNN )隐中心矢量 ,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法 (μGA)相结合 (MAE μGA)来共同实现RBPNN的全结构优化 实验结果显示 ,对比其他几种算法 ,MAE μGA优化后的... 使用最大绝对误差算法 (MAEA)优选径向基概率神经网络 (RBPNN )隐中心矢量 ,将MAEA与求解RBPNN最优核函数控制参数的微遗传算法 (μGA)相结合 (MAE μGA)来共同实现RBPNN的全结构优化 实验结果显示 ,对比其他几种算法 ,MAE μGA优化后的RBPNN结构最简 ,而且在推广能力方面略好于其他几种优化方法 另外 ,MAE 展开更多
关键词 径向概率神经网络 结构优化 微遗传算法 最大绝对误差-微遗传算法
在线阅读 下载PDF
基于全矢谱和径向基概率神经网络的旋转机械故障诊断方法研究 被引量:2
15
作者 杨春燕 丁静 《现代制造工程》 CSCD 北大核心 2010年第1期141-144,共4页
结合全矢谱和径向基概率神经网络的优点,提出一种故障诊断的新方法,该方法是以提取全矢幅值谱的特征输入到径向基概率神经网络分类器进行故障识别。试验结果表明,该方法与传统单通道相比故障正确识别率很高,把它应用于旋转机械故障诊断... 结合全矢谱和径向基概率神经网络的优点,提出一种故障诊断的新方法,该方法是以提取全矢幅值谱的特征输入到径向基概率神经网络分类器进行故障识别。试验结果表明,该方法与传统单通道相比故障正确识别率很高,把它应用于旋转机械故障诊断是有效的。 展开更多
关键词 全矢谱 径向概率神经网络 故障诊断 旋转机械
在线阅读 下载PDF
基于径向基概率神经网络模型的小儿厌食症辅助诊断(英文)
16
作者 翟红林 陈晓峰 +1 位作者 陈兴国 胡之德 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期55-58,共4页
结合了径向基神经网络较强模式分类能力与概率神经网络运算简单的优点,提出了一种径向基概率神经网络模型,并应用于小儿厌食症的辅助诊断,通过对119例样本数据的处理,获得了92.4%的准确率.此外,偏最小二乘法的分析结果表明,Zn元素与小... 结合了径向基神经网络较强模式分类能力与概率神经网络运算简单的优点,提出了一种径向基概率神经网络模型,并应用于小儿厌食症的辅助诊断,通过对119例样本数据的处理,获得了92.4%的准确率.此外,偏最小二乘法的分析结果表明,Zn元素与小儿厌食症关系最为紧密. 展开更多
关键词 径向概率神经网络 小儿厌食症 偏最小二乘法
在线阅读 下载PDF
华南沿海潜在震源区划分——运用MATLAB径向基概率神经网络工具箱求解
17
作者 赵健 郑文涛 +1 位作者 叶洪 周庆 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第6期869-874,共6页
用MATLAB语言建立径向基概率神经网络来求解地震潜在震源区的划分问题,地震潜在震源区划分是地震危险性安全评价工作的重点,影响潜在震源区的客观因素与潜在震源区划分结果间是一种高度非线性关系,将实际问题分析为网络的模式识别,以华... 用MATLAB语言建立径向基概率神经网络来求解地震潜在震源区的划分问题,地震潜在震源区划分是地震危险性安全评价工作的重点,影响潜在震源区的客观因素与潜在震源区划分结果间是一种高度非线性关系,将实际问题分析为网络的模式识别,以华南沿海地区为例检验优化网络,结果较好地对应了中国地震烈度区划图(1990),该方法是对潜在震源区智能划分的一次有效尝试。 展开更多
关键词 潜在震源区划分 华南沿海 非线性关系 径向概率神经网络 MATLAB
在线阅读 下载PDF
基于概率型径向基神经网络(P-RBFN)的人脸识别
18
作者 於东军 赵海涛 杨静宇 《计算机科学》 CSCD 北大核心 2003年第9期43-45,123,共4页
1概述 近年来,人体生物特征(人脸、指纹、虹膜等)识别技术得到了越来越广泛的研究与应用,其中人脸识别技术尤其是一个热点[1,2],和其它人体生物特征进行个人身份鉴别的方法相比,人脸识别具有直接、友好、方便的特点.
关键词 人脸识别 概率径向神经网络 K-L变换 隐型马尔可夫模型 激励函数
在线阅读 下载PDF
径向基概率神经网络的一种自组织学习算法 被引量:4
19
作者 赵温波 都基炎 李玉阁 《小型微型计算机系统》 CSCD 北大核心 2004年第10期1776-1780,共5页
介绍了径向基概率神经网络 (RBPNN)的一种自组织学习算法 ,该算法把径向基概率神经网络的结构原理与自组织聚类算法相结合 ,不仅能够完成对训练样本的聚类分析 ,标识出训练样本的类别属性 ,而且能够自动完成基于该训练样本集的径向基概... 介绍了径向基概率神经网络 (RBPNN)的一种自组织学习算法 ,该算法把径向基概率神经网络的结构原理与自组织聚类算法相结合 ,不仅能够完成对训练样本的聚类分析 ,标识出训练样本的类别属性 ,而且能够自动完成基于该训练样本集的径向基概率神经网络的训练过程 .本算法用于对 IRIS三种花型识别在训练阶段达到 97.33%的识别效果 ,而在推广能力方面 ,由本文算法得到的 RBPNN优于有标识的训练样本的 展开更多
关键词 径向概率神经网络 自组织算法 Parzen窗函数
在线阅读 下载PDF
全结构遗传优化径向基概率神经网络 被引量:4
20
作者 赵温波 黄德双 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2004年第2期113-118,共6页
使用遗传算法来实现径向基概率神经网络 (RBPNN)的全结构遗传优化 ,包括优选网络第一隐层节点数和求取匹配的核函数控制参数 .提出了适用于RBPNN的染色体编码方式 ,不仅使得所选隐中心矢量充分体现了模式样本的空间分布特征 ,同时还能... 使用遗传算法来实现径向基概率神经网络 (RBPNN)的全结构遗传优化 ,包括优选网络第一隐层节点数和求取匹配的核函数控制参数 .提出了适用于RBPNN的染色体编码方式 ,不仅使得所选隐中心矢量充分体现了模式样本的空间分布特征 ,同时还能够获得隐中心矢量的最佳数目及匹配的核函数控制参数 .新构造的适应度函数能够有效地控制网络输出的误差精度 .实验结果表明 ,该算法有效地简化了RBPNN模型的结构 . 展开更多
关键词 径向概率神经网络 遗传算法 全结构优化 隐中心矢量 染色体编码方式 核函数控制参数
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部