期刊文献+
共找到1,346篇文章
< 1 2 68 >
每页显示 20 50 100
单级齿轮系统混沌运动及其径向基函数神经网络控制
1
作者 王瑞邦 田亚平 +3 位作者 张峰 卢杭 王建勤 杨江辉 《噪声与振动控制》 北大核心 2025年第4期32-38,共7页
为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré... 为实现3自由度单级直齿轮系统的混沌运动有效控制,用集中质量法建立系统的动力学模型,并用4~5阶Runge-Kutta法求解得到参数区间内的周期运动向混沌运动转迁的规律。针对特定参数区域的混沌运动,以控制参数的扰动量为输出,Poincaré截面上点的欧式距离为输入,构建径向基函数神经网络控制器,使用改进局部搜索能力和寻优速度的引力搜索算法优化径向基函数神经网络控制器的参数,实现系统混沌运动向周期运动的有效控制。结果表明径向基函数神经网络控制方法不受系统的Jacobian矩阵和流形的限制更具有工程普适性。 展开更多
关键词 振动与波 单级齿轮传动系统 混沌控制 径向函数神经网络 万有引力搜索算法
在线阅读 下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:4
2
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向函数神经网络 粒子群优化算法 参数预测
在线阅读 下载PDF
基于径向基函数神经网络算法的高频转阀阀芯稳定性
3
作者 薛召 陈泽吉 +1 位作者 贾文昂 白继平 《液压与气动》 北大核心 2024年第9期98-107,共10页
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLA... 针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证。结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%。径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度。 展开更多
关键词 径向函数神经网络算法 高频转阀 液压马达 转速控制
在线阅读 下载PDF
基于GWO-RBF神经网络的城市机动车能耗预测
4
作者 李四洋 张瑞 +2 位作者 李雅男 陈贺鹏 陈艳艳 《科学技术与工程》 北大核心 2025年第8期3480-3486,共7页
在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural net... 在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。 展开更多
关键词 机动车 能耗 径向函数神经网络(rbfNN) 灰狼算法(GWO)
在线阅读 下载PDF
基于RBF神经网络的高速列车速度跟踪控制
5
作者 秦世玉 徐传芳 李云浩 《北京交通大学学报》 北大核心 2025年第3期111-119,共9页
针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间... 针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间的车间耦合作用力影响,建立高速列车多质点模型.其次,设计一种基于新型饱和函数的高速列车有限时间速度跟踪控制策略,引入非奇异快速终端滑模控制方法实现高速列车系统状态的有限时间收敛,改善高速列车速度跟踪的稳态精度和暂态性能.再次,设计基于RBF神经网络的自适应非奇异终端滑模跟踪控制策略,利用自适应技术实现对列车模型参数以及附加阻力、车间力等不确定性项上限的在线估计,并针对不连续切换控制项造成的抖振现象,引入RBF神经网络重映射非奇异快速终端滑模控制策略的切换控制项,同时设计权重系数的自适应更新律,实现连续切换,有效消除抖振现象所带来的影响.最后,基于Lyapunov稳定性理论证明高速列车速度跟踪控制系统的稳定性,以及系统状态的有限时间收敛性,并以CRH380B型动车组作为控制对象进行仿真验证.仿真结果表明:高速列车可以在有限时间内收敛并跟踪理想轨线,跟踪误差下降了49%,跟踪精度提高,能够为高速列车跟踪控制领域提供借鉴和参考. 展开更多
关键词 高速列车 径向函数神经网络 多质点模型 速度跟踪 自适应滑模控制
在线阅读 下载PDF
基于多变量相空间重构和径向基函数神经网络的综合能源系统电冷热超短期负荷预测 被引量:14
6
作者 窦真兰 张春雁 +2 位作者 许一洲 高煜焜 刘皓明 《电网技术》 EI CSCD 北大核心 2024年第1期121-128,共8页
为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦... 为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。 展开更多
关键词 电冷热负荷预测 综合能源系统 多变量相空间重构 径向函数神经网络
在线阅读 下载PDF
一种新颖的径向基函数(RBF)网络学习算法 被引量:32
7
作者 孙健 申瑞民 韩鹏 《计算机学报》 EI CSCD 北大核心 2003年第11期1562-1567,共6页
以提高RBF网络泛化能力为着眼点 ,提出了一种新型的网络结构自适应学习算法 .该算法采用衰减聚类半径的聚类算法来确定初始的隐层结构 ,然后通过调整包含样本类别信息的扩展聚类不纯度来修正隐层结构 ,直至满足所有扩展聚类不纯度均小... 以提高RBF网络泛化能力为着眼点 ,提出了一种新型的网络结构自适应学习算法 .该算法采用衰减聚类半径的聚类算法来确定初始的隐层结构 ,然后通过调整包含样本类别信息的扩展聚类不纯度来修正隐层结构 ,直至满足所有扩展聚类不纯度均小于等于不纯度均值以及所有扩展聚类方差均不超过方差均值这两个条件 .这样就确定了隐层的最终结构 .在确定隐层结构之后 ,采用反向传播算法来训练隐层与输出层之间的连接权重 .经双螺旋线问题仿真试验验证 ,该算法确实具有较强的泛化能力 . 展开更多
关键词 单隐层前馈神经网络 径向函数 网络学习算法 机器学习 支持向量机
在线阅读 下载PDF
基于径向基函数神经网络(RBFN)的内蒙古土壤风蚀危险度评价 被引量:14
8
作者 师华定 高庆先 +1 位作者 庄大方 胡云锋 《环境科学研究》 EI CAS CSCD 北大核心 2008年第5期129-133,共5页
土壤风蚀是北方干旱和半干旱地区土地沙化和沙尘暴灾害的首要环节和主要动力过程之一.选取影响内蒙古自治区土壤风蚀演化的相关指标,运用GIS技术提取各指标数据,构建径向基函数神经网络(Radial Basis Function Network,RBFN);根据不同... 土壤风蚀是北方干旱和半干旱地区土地沙化和沙尘暴灾害的首要环节和主要动力过程之一.选取影响内蒙古自治区土壤风蚀演化的相关指标,运用GIS技术提取各指标数据,构建径向基函数神经网络(Radial Basis Function Network,RBFN);根据不同风蚀危险程度标准,选取12个市、县(旗)相关数据进行训练,确定网络模型参数,进而对内蒙古自治区88个市、县(旗)的土壤风蚀危险度进行了评价.结果表明:内蒙古自治区西部为土壤风蚀发生的极强危险区,西北为强危险区,中部为中度危险区,而东部为轻度危险区;利用其他研究对该评价结论进行对比验证,结果较为理想. 展开更多
关键词 内蒙古自治区 土壤风蚀 径向函数神经网络 危险度评价
在线阅读 下载PDF
径向基函数(RBF)神经网络的一种极大熵学习算法 被引量:14
9
作者 张志华 郑南宁 郑海兵 《计算机学报》 EI CSCD 北大核心 2001年第5期474-479,共6页
RBF神经网络中心向量的确定是整个网络学习的关键 ,该文基于信息论中的极大熵原理构造了训练中心向量的极大熵聚类算法 ,由此给出了网络的极大熵学习算法 .文中最后分别用一个时间序列预测和系统辨识问题验证了该学习算法的有效性 ,同 ... RBF神经网络中心向量的确定是整个网络学习的关键 ,该文基于信息论中的极大熵原理构造了训练中心向量的极大熵聚类算法 ,由此给出了网络的极大熵学习算法 .文中最后分别用一个时间序列预测和系统辨识问题验证了该学习算法的有效性 ,同 RBF网络和多层感知机的误差回传算法相比 ,该算法不仅在学习精度和泛化推广能力上有一定程度的提高 ,而且学习时间有显著的降低 . 展开更多
关键词 径向函数 极大熵原理 拉格朗日乘子 神经网络 学习算法
在线阅读 下载PDF
一种用于径向基函数(RBF)神经网络训练的有效方法 被引量:7
10
作者 孙毅刚 战强 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1997年第4期103-106,共4页
提出了一种用于径向基函数(RBF)神经网络训练的新方法,即Gauss-Jordan与求广义逆(genemalinverse)的复合法。仿真结果表明,此方法训练速度快,实时性强,其收敛性和收敛精度均比正交最小二乘算法(OLS)效果好。
关键词 径向函数 神经网络 仿真 复合法
在线阅读 下载PDF
基于权重自适应更新径向基函数神经网络的水下游动机械臂镇定控制 被引量:2
11
作者 孙非 曹宇赫 +1 位作者 崔特 任超 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期1-8,共8页
水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑... 水下游动机械臂(underwater swimming manipulator,USM)是一种由水下蛇形机器人和矢量推进器组成的新型水下机器人。USM系统具有高度非线性、强耦合以及不确定性等特点,其动力学模型难以精确建立。因此,实现USM的高精度镇定控制存在挑战。针对这一问题,本文基于反馈线性化和自适应径向基函数神经网络(radial basis function neural network,RBFNN),设计了一种动力学控制方案以实现USM的镇定控制。首先,介绍了USM平台结构,基于Lagrange方程给出了USM的动力学模型,并推导了USM的矢量推力系统模型。然后,设计了基于反馈线性化和RBFNN的动力学控制器,并通过反步法自适应更新RBFNN的权重。其中,权重自适应更新RBFNN用于实时估计系统未建模部分、参数误差以及外部扰动,从而对动力学控制器进行补偿。此外,为了将动力学控制器提供的广义力和力矩转换成各个执行器的控制输入,给出了推力分配策略。最后,进行了湖泊实验,分别对USM的I构型和C构型镇定控制,文章所提出的控制方案在两种构型下的稳态误差均小于0.08 m和10°,验证了所提出的USM六自由度镇定控制器的有效性。 展开更多
关键词 水下游动机械臂 动力学建模 反馈线性化 径向函数神经网络
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
12
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向函数神经网络(radial basis function neural network rbfNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
基于SSA-RBF神经网络的煤自然发火预测模型 被引量:2
13
作者 高飞 梁宁 +1 位作者 贾喆 侯青 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期128-137,共10页
为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(... 为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(i)<120℃)、加速(120≤t_(i)<160℃)和激烈(t_(i)≥160℃)3个氧化阶段,同时分析这3个阶段指标气与煤温的灰色关联度;其次通过不同维度测试函数检验粒子群算法(PSO)、灰狼算法(GWO)和SSA算法性能;最后利用6个矿区数据验证基于SSA-RBF神经网络的煤自燃预测模型的优越性。结果显示,缓慢氧化阶段CO/ΔO_(2)、CO、C_(2)H_(4)这3种指标气体与煤温的灰色关联系数最大;而加速氧化阶段C_(2)H_(4)/C_(2)H_(6)、CO/ΔO_(2)、CO_(2)/CO_(3)种指标与煤温的灰色关联系数最大。3种不同维度函数的测试结果表明:SSA与PSO、GWO相比具有更好的全局搜索能力和稳定性,其收敛速度更快;神经元数量为5个、迭代次数为300次时,SSA-RBF神经网络预测模型对缓慢氧化和加速氧化阶段的预测准确性分别达到了99%和93%。 展开更多
关键词 麻雀搜索算法(SSA) 径向函数(rbf)神经网络 煤自然发火 预测模型 指标气 灰色关联度
在线阅读 下载PDF
基于多源信息融合的RBF神经网络室内可见光定位算法 被引量:2
14
作者 王琪 孟祥艳 赵黎 《光通信技术》 北大核心 2024年第2期30-35,共6页
针对基于接收信号强度(RSS)的定位技术易受环境干扰而导致定位精度不高和稳定性较差的问题,提出了一种基于多源信息融合的径向基函数(RBF)神经网络室内可见光定位算法。通过将图像的颜色矩特征与RSS矩特征融合,构建指纹库,并采用RBF神... 针对基于接收信号强度(RSS)的定位技术易受环境干扰而导致定位精度不高和稳定性较差的问题,提出了一种基于多源信息融合的径向基函数(RBF)神经网络室内可见光定位算法。通过将图像的颜色矩特征与RSS矩特征融合,构建指纹库,并采用RBF神经网络进行预测,实现了图像与RSS之间的优势互补,最后对定位算法进行了验证。实验结果表明,经过优化的多源信息融合定位算法较单一RSS定位算法的定位精度提高了9.4%。 展开更多
关键词 可见光 室内定位 多源信息融合 颜色矩 神经网络 径向函数 特征提取
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
15
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(WOA) 模拟退火算法(SA) 径向神经网络模型(rbf) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于辅助变量和回归径向基函数神经网络(R-RBFNN)的土壤有机质空间分布模拟 被引量:3
16
作者 江叶枫 郭熙 《浙江农业学报》 CSCD 北大核心 2018年第4期640-648,共9页
为快速准确地获取土壤有机质的空间分布状况,以江西省万年县齐埠镇为例,运用四方位搜索法、地统计学和遥感影像分析技术提取环境因子和邻近信息,构建基于环境因子和邻近信息的回归克里金法(RK)和回归径向基函数神经网络法(R-RBFNN),对... 为快速准确地获取土壤有机质的空间分布状况,以江西省万年县齐埠镇为例,运用四方位搜索法、地统计学和遥感影像分析技术提取环境因子和邻近信息,构建基于环境因子和邻近信息的回归克里金法(RK)和回归径向基函数神经网络法(R-RBFNN),对齐埠镇耕地表层(0~20 cm)土壤有机质空间分布进行模拟,并与普通克里金法(OK)相比较。结果显示:齐埠镇耕地表层土壤有机质含量在17.30~53.58 g·kg^(-1),平均值为35.03 g·kg^(-1),变异系数为23.61%,呈中等变异性。半变异函数分析显示,土壤有机质的块金效应值为0.59,表现为中等空间相关性,自相关范围较大。利用62个采样点进行建模、16个采样点进行独立验证,误差分析表明,应用环境因子和邻近信息作为辅助变量的RK和R-RBFNN预测结果的均方根误差、平均绝对误差、平均相对误均差较OK降低,测试集中的相对提高度分别为66.67%和71.79%,显示出较高精度。但R-RBFNN无须计算半方差函数,使用简单,因此更具优势。 展开更多
关键词 土壤有机质 普通克里金 回归克里金 径向函数神经网络 预测
在线阅读 下载PDF
基于神经网络的无线电能传输自抗扰控制 被引量:1
17
作者 宋贝多 程志江 +1 位作者 刘尊祝 杨涵棣 《现代电子技术》 北大核心 2025年第6期85-90,共6页
为了实现电压型无线电能传输系统(WPT)的精确和稳定输出,解决自抗扰控制器(ADRC)参数整定复杂的问题,提出一种基于径向基(RBF)神经网络优化的ADRC控制的WPT系统。首先,建立双边LCC型WPT系统模型,并采用Hammerstein模型简化系统分析和控... 为了实现电压型无线电能传输系统(WPT)的精确和稳定输出,解决自抗扰控制器(ADRC)参数整定复杂的问题,提出一种基于径向基(RBF)神经网络优化的ADRC控制的WPT系统。首先,建立双边LCC型WPT系统模型,并采用Hammerstein模型简化系统分析和控制器设计;其次,利用RBF神经网络的在线学习能力动态优化ADRC控制器中的可调参数,以实现对系统输出电压的精确控制;最后,搭建基于RBF-ADRC的无线电能传输装置,比较RBF-ADRC和ADRC控制器的控制效果。实验结果表明,与传统ADRC控制器相比,RBF-ADRC控制器不仅解决了参数调整困难的问题,还显著提升了系统的响应速度和控制性能,验证了RBF-ADRC控制器的有效性,实现了无超调的稳定输出,并且过渡时间更短。 展开更多
关键词 无线电能传输系统 自抗扰控制 rbf神经网络 双边LCC型拓扑结构 恒压输出 径向函数
在线阅读 下载PDF
基于广义生长-剪枝径向基函数神经网络的谐波源建模 被引量:24
18
作者 占勇 程浩忠 +1 位作者 葛乃成 黄广兵 《中国电机工程学报》 EI CSCD 北大核心 2005年第16期42-46,共5页
采用广义生长-剪枝RBF神经网络建立稳态频域的谐波源模型。在该模型中,各次谐波电流的幅值和相角与各次谐波电压的幅值和相角以及负荷特征参数的非线性映射关系通过一种新颖的广义生长?剪枝RBF网络进行建模。该网络的学习算法是串行的,... 采用广义生长-剪枝RBF神经网络建立稳态频域的谐波源模型。在该模型中,各次谐波电流的幅值和相角与各次谐波电压的幅值和相角以及负荷特征参数的非线性映射关系通过一种新颖的广义生长?剪枝RBF网络进行建模。该网络的学习算法是串行的,可以进行动态建模。算例计算表明,该模型具有训练时间少、精度高、可动态建模等优点。 展开更多
关键词 电力系统 谐波潮流 谐波源模型 径向函数 神经网络 串行学习 广义生长-剪枝径向函数
在线阅读 下载PDF
基于径向基函数神经网络和模糊积分融合的电网分区故障诊断 被引量:53
19
作者 石东源 熊国江 +1 位作者 陈金富 李银红 《中国电机工程学报》 EI CSCD 北大核心 2014年第4期562-569,共8页
为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的... 为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的区域径向基函数神经网络诊断模块,然后利用模糊积分关联融合相连区域关于联络线的诊断输出,实现对联络线的故障诊断。该方法不仅可以诊断各区域内部发生的故障,而且能够有效地诊断区域间联络线发生的故障。算例仿真结果表明:该方法简单、有效,能弥补现有电网分区故障诊断方法在联络线故障诊断方面存在的不足,且能够处理各种复杂故障情况,具有良好的故障容错能力。 展开更多
关键词 大电网 电网分区 故障诊断 径向函数神经网络 模糊积分
在线阅读 下载PDF
基于数字钻进技术和量子遗传-径向基函数神经网络的围岩类别超前识别技术研究 被引量:25
20
作者 邱道宏 李术才 +2 位作者 薛翊国 田昊 闫茂旺 《岩土力学》 EI CAS CSCD 北大核心 2014年第7期2013-2018,共6页
围岩类别超前分类是隧道施工过程中必须开展的一项工作,其直接关系到后续的开挖及施工支护方案。为有效地进行隧道围岩类别超前分类,提出了基于数字钻进技术和量子遗传(QGA)-径向基函数(RBF)神经网络的围岩类别超前分类方法。以数字钻... 围岩类别超前分类是隧道施工过程中必须开展的一项工作,其直接关系到后续的开挖及施工支护方案。为有效地进行隧道围岩类别超前分类,提出了基于数字钻进技术和量子遗传(QGA)-径向基函数(RBF)神经网络的围岩类别超前分类方法。以数字钻进技术为基础,从钻进参数中提取有用信息,构建围岩类别超前分类指标体系。采用量子计算原理对遗传算法进行改进,通过量子位编码和量子旋转门更新种群,以此来确定RBF神经网络的参数,建立了基于QGA-RBF神经网络的围岩类别超前识别系统。最后将该方法应用于青岛胶州湾海底隧道的围岩类别超前识别中,结果表明,该方法具有较高的准确性,其结果为围岩类别超前分类提供了一种新思路。 展开更多
关键词 围岩分类 超前识别 数字钻进 量子遗传算法(QGA) 径向函数(rbf)神经网络
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部