期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于类别注意实例归一化机制的人脸年龄合成 被引量:2
1
作者 舒祥波 施成龙 +1 位作者 孙运莲 唐金辉 《软件学报》 EI CSCD 北大核心 2022年第7期2716-2728,共13页
近年来,生成对抗网络(generative adversarial network,GAN)家族已在人脸年龄合成任务上取得了巨大的成功.然而,通过研究发现,在解决人脸年龄合成的问题时,即使是善于利用年龄先验信息的条件生成对抗网络(conditional generative advers... 近年来,生成对抗网络(generative adversarial network,GAN)家族已在人脸年龄合成任务上取得了巨大的成功.然而,通过研究发现,在解决人脸年龄合成的问题时,即使是善于利用年龄先验信息的条件生成对抗网络(conditional generative adversarial network,CGAN),重要的人脸年龄相关信息在一程度上也会被丢弃.这是导致以CGAN为代表的GAN家族在人脸年龄合成上的性能到达瓶颈期的一个重要因素.为此,提出了一种类别注意实例归一化机制(class-aware instance normalization,CAIN).该机制能够灵活地嵌入到CGAN中,形成一种新的生成对抗网络模型,即CAIN-GAN.CAIN-GAN能够充分利用人脸年龄先验信息来进一步提高人脸年龄合成性能.在公开数据集上的实验结果表明,与其他几种GAN家族的方法对比,CAIN-GAN方法仅通过利用人脸年龄相关信息就能对人脸年龄合成性能进行提升. 展开更多
关键词 生成对抗网络 人脸年龄合成 归一化机制
在线阅读 下载PDF
应用归一化通道注意力机制的YOLOv7交通标志检测算法 被引量:1
2
作者 刘晶 刘俊伟 《计算机工程与应用》 北大核心 2025年第11期249-258,共10页
现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有... 现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有像素级建模能力,提高它对小目标交通标志特征的提取能力,YOLOv7-NCAM算法使用FReLU激活函数构建了DBF和CBF两种卷积层,并用它们来组建模型的Backbone模块和Neck模块;提出一种归一化通道注意力机制(normalized channel attention mechanism,NCAM)并加入Head模块中。通过与整体网络一起训练,得到归一化(batch normalization,BN)缩放因子,利用缩放因子算出各个通道的权重因子,提升网络对交通标志特征的表达能力,从而使YOLOv7-NCAM网络模型能够集中关注检测目标交通标志。通过在CCTSDB-2021交通标志检测数据集上的测试,与YOLOv7网络模型对比结果表明,YOLOv7-NCAM算法对背景复杂下小交通标志的检测各项指标均有明显提高:准确率(precision,P)达到91.5%,比原网络高出9.5个百分点;召回率(recall,R)达到85.9%,比原网络高出5.7个百分点;均值平均精度(mean average precision,mAP)达到了91.4%,比原网络高出4.7个百分点。与现有的交通标志检测算法相比,YOLOv7-NCAM算法的检测准确率也有提高,且检测速度48.3 FPS,能满足实时需求。 展开更多
关键词 YOLOv7 归一化通道注意力机制 交通标志 激活函数
在线阅读 下载PDF
基于归一化注意力机制的特征自适应融合目标跟踪算法 被引量:9
3
作者 张立国 章玉鹏 +2 位作者 金梅 张升 耿星硕 《计量学报》 CSCD 北大核心 2023年第9期1383-1389,共7页
针对快速运动目标跟踪时图像的形变和低分辨率等问题,基于当前的孪生网络,提出一种基于归一化注意力机制的特征自适应融合目标跟踪算法。首先,通过轻量级的注意力机制抑制不太明显的权重,对注意力模块施加权重稀疏惩罚,并对主干网络最后... 针对快速运动目标跟踪时图像的形变和低分辨率等问题,基于当前的孪生网络,提出一种基于归一化注意力机制的特征自适应融合目标跟踪算法。首先,通过轻量级的注意力机制抑制不太明显的权重,对注意力模块施加权重稀疏惩罚,并对主干网络最后4个特征层进行路径增强;其次,为捕捉在线跟踪过程中目标的外观变化,提升算法鲁棒性,提出了一种插件式的模板在线更新方法;最后,利用回归增强分类的方法完成对目标的跟踪。实验结果表明:该算法在OTB100,UAV123两个挑战性数据集上分别取得了63.3%和59.5%的较高成功率;同时,在外界光照变化、图像背景复杂、目标平面内旋转时,算法具有较强的鲁棒性。 展开更多
关键词 计量学 目标跟踪算法 归一化注意力机制 孪生网络 路径增强 机器视觉 图像处理
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:2
4
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
基于幅值密度特征的调制格式识别方法
5
作者 周顺勇 胡琴 +2 位作者 陆欢 张航领 彭梓洋 《光通信技术》 北大核心 2025年第1期101-106,共6页
为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准... 为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准识别。在28 GBaud正交相移键控(QPSK)、8电平正交幅度调制(8QAM)、16QAM、32QAM、64QAM和128QAM传输系统中验证了该方案的可行性。实验结果表明:每种调制格式在达到100%识别准确率时所需的最低光信噪比(OSNR)均低于其对应的20%前向纠错(FEC)阈值,而且,在较宽的OSNR范围内达到了99.62%的识别准确率;在存在残余色散的光网络中,该方案仍能保持较高的识别性能。 展开更多
关键词 调制格式识别 光通信 幅值密度特征 Mobile ViT 归一化注意力机制
在线阅读 下载PDF
基于YOLOv7模型改进的轻量级鱼类目标检测方法 被引量:6
6
作者 梅海彬 黄政 袁红春 《大连海洋大学学报》 CAS CSCD 北大核心 2023年第6期1032-1043,共12页
为了解决商业渔船电子监控系统中鱼类检测和识别依赖于人工完成的问题,提出一种基于YOLOv7的轻量级鱼类实时检测模型YOLOv7-MRN,将YOLOv7的骨干网络替换为MobileNetv3骨干网络,以降低运算量,并添加了感受野模块RFB来增强网络的特征提取... 为了解决商业渔船电子监控系统中鱼类检测和识别依赖于人工完成的问题,提出一种基于YOLOv7的轻量级鱼类实时检测模型YOLOv7-MRN,将YOLOv7的骨干网络替换为MobileNetv3骨干网络,以降低运算量,并添加了感受野模块RFB来增强网络的特征提取能力;通过引入基于归一化的注意力机制模块NAM,重新设计颈部特征融合网络,以抑制无关紧要的权重。结果表明:在HNY768远洋渔船电子监控视频渔业数据集上,YOLOv7-MRN模型的mAP@0.5为86.5%,运算量仅为原模型YOLOv7的9.8%,模型在GPU和CPU上的推理速度分别提高了121.69%和219.09%;相较于其他模型,YOLOv7-MRN模型的实际检测效果更好,尤其是在强日光场景下。研究表明,本文中提出的YOLOv7-MRN模型对鱼类的检测效果好,消耗的计算资源更少,可将该模型部署在电子渔船监控系统中。 展开更多
关键词 YOLOv7 基于归一化的注意力机制 深度可分离卷积 鱼类目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部