期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
关于图的两类强符号控制数的下界
1
作者 刘惠敏 《华北电力大学学报(自然科学版)》 CAS 北大核心 2010年第4期109-112,共4页
设图G=(V,E)为无孤立点的简单图,且f:V→{-1,1}为G上的一个函数,如果对于任意的顶点v∈V,均有f[v]≥2,则称f是图G的一个强符号控制函数。图G的强符号控制数定义为γss(G)=min{w(f)|f是图G的强符号控制函数}。设k是1≤k≤|V|的正整数,f:V... 设图G=(V,E)为无孤立点的简单图,且f:V→{-1,1}为G上的一个函数,如果对于任意的顶点v∈V,均有f[v]≥2,则称f是图G的一个强符号控制函数。图G的强符号控制数定义为γss(G)=min{w(f)|f是图G的强符号控制函数}。设k是1≤k≤|V|的正整数,f:V→{-1,1}为图G上的一个函数,如果在图G中至少有k个顶点,使得f[v]≥2,则称f是图G的一个强k-符号控制函数。图G的强k-符号控制数定义为γkss=min{w(f)|f是图强G的k-符号控制函数}。分别得出了强符号控制数及强k-符号控制数的几种形式的下界。 展开更多
关键词 强符号控制数 k-符号控制数 下界
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部