Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace f...Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.展开更多
A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where t...A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where the resource pool is constructed from a large number of distributed heterogeneous servers, representing different points in the configuration space of resources such as processing, memory, storage and bandwidth. By introducing dominant resource share of jobs and virtual machines, the multi-job scheduling and multi-resource allocation joint mechanism significantly improves the cloud system's resource utilization, yet with a substantial reduction of job completion times. We show through experiments and case studies the superior performance of the algorithms in practice.展开更多
In this paper we study existence of solutions of a class of Cauchy problems for porous medium equations with strongly nonlinear sources or absorptions and convections when the initial trace is a Radon measure μ on RN.
In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented...In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.62022061)Tianjin Natural Science Foundation(No.20JCYBJC00880)Beijing Key Laboratory Open Fund of Long-Life Technology of Precise Rotation and Transmission Mechanisms.
文摘Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.
文摘A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where the resource pool is constructed from a large number of distributed heterogeneous servers, representing different points in the configuration space of resources such as processing, memory, storage and bandwidth. By introducing dominant resource share of jobs and virtual machines, the multi-job scheduling and multi-resource allocation joint mechanism significantly improves the cloud system's resource utilization, yet with a substantial reduction of job completion times. We show through experiments and case studies the superior performance of the algorithms in practice.
文摘In this paper we study existence of solutions of a class of Cauchy problems for porous medium equations with strongly nonlinear sources or absorptions and convections when the initial trace is a Radon measure μ on RN.
基金supported in part by National Natural Science Foundation of China (No.61372070)Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6324)+2 种基金Ningbo Natural Science Foundation (2015A610117)Hong Kong,Macao and Taiwan Science & Technology Cooperation Program of China (2015DFT10160)the 111 Project (B08038)
文摘In order to maximize system energy efficiency(EE) under user quality of service(Qo S) restraints in Long Term Evolution-Advanced(LTE-A) networks,a constrained joint resource optimization allocation scheme is presented,which is NP-hard. Hence,we divide it into three sub-problems to reduce computation complexity,i.e.,the resource block(RB) allocation,the power distribution,and the modulation and coding scheme(MCS) assignment for user codewords. Then an enhanced heuristic approach GAPSO is proposed and is adopted in the RB and power allocation respectively to reduce computational complexity further on. Moreover,a novel MCS allocation scheme is put forward,which could make a good balance between the system reliability and availability under different channel conditions. Simulation results show that the proposed GAPSO could achieve better performance in convergence speed and global optimum searching,and that the joint resource allocation scheme could improve energy efficiency effectively under user Qo S requirements.