期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
引导编辑系统研究进展 被引量:1
1
作者 林秋鹏 朱秀丽 +1 位作者 马琳莎 姚鹏程 《华南农业大学学报》 CSCD 北大核心 2024年第2期159-171,共13页
引导编辑(Prime editing,PE)系统是一种全新的、革命性的基因组编辑策略。该系统由引导编辑器(Prime editor)组成,包括nCas9(H840A)与逆转录酶(Reverse transcriptase,RT)的融合蛋白;以及包含PBS(Primer binding site)序列和RT模板(RT t... 引导编辑(Prime editing,PE)系统是一种全新的、革命性的基因组编辑策略。该系统由引导编辑器(Prime editor)组成,包括nCas9(H840A)与逆转录酶(Reverse transcriptase,RT)的融合蛋白;以及包含PBS(Primer binding site)序列和RT模板(RT template,RTT)序列的pegRNA(Prime editing guide RNA)两大部分。PE系统可以在双链不断裂的情况下实现所有12种类型的碱基替换及小片段DNA增删,是精准编辑的全新范式。自2019年开发至今不到4年时间,PE系统作为一种通用的技术平台,已广泛应用于医疗、农业等各个领域,产生了一大批新种质资源、基因治疗药物等优秀应用案例。PE作为目前最灵活、最具发展前景的基因组精准编辑新手段,仍旧存在效率偏低、大片段操纵能力不足、系统组分设计复杂(如pegRNA)、安全性未全面评估等问题,仍需要深入研究。本文详细介绍了PE系统的技术原理及限制因素,全面总结了PE系统自开发以来的优化策略及在动植物系统、医疗领域的应用现状,并对PE的发展前景进行了展望。 展开更多
关键词 引导编辑系统 优化策略 农业应用 医疗应用
在线阅读 下载PDF
引导编辑系统的优化及在DNA大片段编辑中的应用
2
作者 焦瑶歌 姚少华 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2602-2620,共19页
基因编辑技术是指利用人工核酸酶对细胞和个体中特定的基因序列进行插入、替换或删除等编辑修饰。CRISPR/Cas9核酸酶的发现是基因编辑技术发展的一个里程碑,但其编辑产物的精确性和脱靶效应依然是限制其应用的关键因素。近年来以引导编... 基因编辑技术是指利用人工核酸酶对细胞和个体中特定的基因序列进行插入、替换或删除等编辑修饰。CRISPR/Cas9核酸酶的发现是基因编辑技术发展的一个里程碑,但其编辑产物的精确性和脱靶效应依然是限制其应用的关键因素。近年来以引导编辑技术为代表的衍生性编辑工具因高效且精准而受到广泛关注。该系统能够以不可逆的方式在基因组中靶向引入多种类型的遗传变化,包括12种可能类型的点突变,以及片段的插入和缺失及其组合,而无需DNA双链断裂(DSB)或者供体DNA模板。引导编辑技术结合了CRISPR/Cas9的靶向性和逆转录酶的精准编辑能力,使得编辑产物更加精准。本综述将深入探讨引导编辑技术的发展、优化以及在DNA大片段编辑中的应用。 展开更多
关键词 CRISPR/Cas9 引导编辑系统 pegRNA DNA大片段编辑
在线阅读 下载PDF
引导编辑系统的研究与应用进展 被引量:3
3
作者 邹惠影 李俊良 朱化彬 《畜牧兽医学报》 CAS CSCD 北大核心 2022年第11期3721-3730,共10页
引导编辑系统是基于CRISPR/Cas9系统新开发出的一种基因编辑技术,可以精确实现12种碱基的互换、插入和缺失,并且不需要产生双链断裂和引入外源供体DNA。本文从基因编辑的发展历程、引导编辑系统的组成和特点、引导编辑系统的优化、引导... 引导编辑系统是基于CRISPR/Cas9系统新开发出的一种基因编辑技术,可以精确实现12种碱基的互换、插入和缺失,并且不需要产生双链断裂和引入外源供体DNA。本文从基因编辑的发展历程、引导编辑系统的组成和特点、引导编辑系统的优化、引导编辑系统在动物和植物研究中的应用、引导编辑系统的设计和脱靶效应等几个方面详细的对引导编辑系统近几年的研究及应用概况进行了综述,为促进科研工作者了解引导编辑系统及进一步推进引导编辑系统在动物和植物科学基础研究和育种方面的应用提供参考。 展开更多
关键词 基因编辑技术 引导编辑系统 精确编辑 应用研究
在线阅读 下载PDF
Development and Therapeutic Applications of Precise Gene Editing Technology
4
作者 ZHANG Yi-Meng YANG Xiao +1 位作者 WANG Jian LI Zhen-Hua 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2637-2647,共11页
The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo... The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes. 展开更多
关键词 precise gene editing CRISPR/Cas system base editing prime editing gene therapy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部