期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
边缘资源轻量化需求下深度神经网络双角度并行剪枝方法
1
作者 张云翔 高圣溥 《沈阳工业大学学报》 北大核心 2025年第2期250-257,共8页
【目的】深度神经网络的应用面临庞大的计算需求和存储开销,这已成为限制其在边缘设备上广泛应用的主要瓶颈。边缘设备因受限于有限的计算资源和存储空间,难以高效运行复杂的深度神经网络模型。因此,在保证模型精度的前提下,如何降低深... 【目的】深度神经网络的应用面临庞大的计算需求和存储开销,这已成为限制其在边缘设备上广泛应用的主要瓶颈。边缘设备因受限于有限的计算资源和存储空间,难以高效运行复杂的深度神经网络模型。因此,在保证模型精度的前提下,如何降低深度神经网络的复杂度和计算量以适应边缘设备对资源轻量化的需求,已成为当前研究的重要方向。提出了一种结合蚁群算法与双角度并行剪枝的深度神经网络优化方法,以提升深度神经网络在边缘设备中的性能。【方法】分析了深度神经网络的结构特点,并构建了包含多个隐藏层的模型。通过蚁群算法模拟蚂蚁觅食过程中的信息素传递机制,在复杂空间中寻找近似最优解,对隐藏层中的相似节点进行聚类,识别并归类高度相似的神经元节点,从而缩减网络规模并降低复杂性。在聚类结果的基础上,提出了对聚类后的冗余节点及游离节点双角度并行剪枝策略:一方面,从权重矩阵的稀疏性出发,裁剪权重较小的节点,以减少计算开销;另一方面,从节点贡献度角度评估每个节点对整体输出的影响,裁剪贡献度较低的节点,从而进一步优化网络结构。【结果】实验结果表明,与未剪枝的原始模型相比,在相同的计算时间内,本文方法剪枝后的深度神经网络在保持较高精度的同时,其数据量高达120 MB、网络复杂度平均值为88.32%、可拓展性为99%。这一结果表明,在有限的资源条件下,该方法能够显著提升深度神经网络的运行效率,更好地满足边缘设备的应用需求。实验结果不仅验证了该方法的有效性,也为深度神经网络在边缘设备上的部署和应用提供了新思路。【结论】提出的优化方法通过在剪枝过程中应用蚁群算法,实现了隐藏层相似节点的精准聚类,为后续的剪枝处理提供了明确目标。同时,双角度并行剪枝策略提升了剪枝的效率和效果,确保剪枝后模型在精度和可拓展性方面的平衡。该方法不仅能够促进深度神经网络在边缘设备上的广泛应用,也为复杂网络优化问题提供了借鉴和参考价值。 展开更多
关键词 边缘资源 轻量化需求 深度神经网络 双角度并行 剪枝方法 蚁群算法 冗余节点 游离节点
在线阅读 下载PDF
基于卷积神经网络的窄线宽光谱结构参数优化
2
作者 富小鸥 王原丽 +1 位作者 杜庆国 付琴 《江苏大学学报(自然科学版)》 北大核心 2025年第4期438-443,共6页
为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正... 为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正向预测网络;进一步将训练好的网络与遗传算法相结合,实现超表面结构参数优化.仿真结果表明:训练好的预测网络在测试集上的损失值仅为5.6×10^(-4),且结合优化算法寻优得到的结果比原始数据集中最小半高全宽减小了0.040 nm.新方法相较于传统方法提升了复杂超表面结构的优化效率和效果. 展开更多
关键词 超表面 微纳结构设计 Fano共振 深度学习 卷积神经网络 优化算法
在线阅读 下载PDF
基于Im2col的并行深度卷积神经网络优化算法 被引量:12
3
作者 胡健 龚克 +2 位作者 毛伊敏 陈志刚 陈亮 《计算机应用研究》 CSCD 北大核心 2022年第10期2950-2956,2961,共8页
针对大数据环境下并行深度卷积神经网络(DCNN)算法中存在数据冗余特征多、卷积层运算速度慢、损失函数收敛性差等问题,提出了一种基于Im2col方法的并行深度卷积神经网络优化算法IA-PDCNNOA。首先,提出基于Marr-Hildreth算子的并行特征... 针对大数据环境下并行深度卷积神经网络(DCNN)算法中存在数据冗余特征多、卷积层运算速度慢、损失函数收敛性差等问题,提出了一种基于Im2col方法的并行深度卷积神经网络优化算法IA-PDCNNOA。首先,提出基于Marr-Hildreth算子的并行特征提取策略MHO-PFES,提取数据中的目标特征作为卷积神经网络的输入,有效避免了数据冗余特征多的问题;其次,设计基于Im2col方法的并行模型训练策略IM-PMTS,通过设计马氏距离中心值去除冗余卷积核,并结合MapReduce和Im2col方法并行训练模型,提高了卷积层运算速度;最后提出改进的小批量梯度下降策略IM-BGDS,排除异常节点的训练数据对批梯度的影响,解决了损失函数收敛性差的问题。实验结果表明,IA-PDCNNOA算法在大数据环境下进行深度卷积神经网络计算具有较好的性能表现,适用于大规模数据集的并行化深度卷积神经网络模型训练。 展开更多
关键词 大数据 深度卷积神经网络算法 并行计算 特征提取 图像分类
在线阅读 下载PDF
基于并行深度卷积神经网络的图像美感分类 被引量:54
4
作者 王伟凝 王励 +3 位作者 赵明权 蔡成加 师婷婷 徐向民 《自动化学报》 EI CSCD 北大核心 2016年第6期904-914,共11页
随着计算机和社交网络的飞速发展,图像美感的自动评价产生了越来越大的需求并受到了广泛关注.由于图像美感评价的主观性和复杂性,传统的手工特征和局部特征方法难以全面表征图像的美感特点,并准确量化或建模.本文提出一种并行深度卷积... 随着计算机和社交网络的飞速发展,图像美感的自动评价产生了越来越大的需求并受到了广泛关注.由于图像美感评价的主观性和复杂性,传统的手工特征和局部特征方法难以全面表征图像的美感特点,并准确量化或建模.本文提出一种并行深度卷积神经网络的图像美感分类方法,从同一图像的不同角度出发,利用深度学习网络自动完成特征学习,得到更为全面的图像美感特征描述;然后利用支持向量机训练特征并建立分类器,实现图像美感分类.通过在两个主流的图像美感数据库上的实验显示,本文方法与目前已有的其他算法对比,获得了更好的分类准确率. 展开更多
关键词 图像美感评估 深度卷积神经网络 并行卷积神经网络 特征提取
在线阅读 下载PDF
基于改进Fisher准则的深度卷积神经网络识别算法 被引量:24
5
作者 孙艳丰 齐光磊 +1 位作者 胡永利 赵璐 《北京工业大学学报》 CAS CSCD 北大核心 2015年第6期835-841,共7页
为了有效利用深度学习技术自动提取特征的能力,并解决当训练样本量减少或者迭代次数降低时识别性能急速下降的问题,提出了基于Fisher准则的深度学习算法.该方法在前馈传播时,采用卷积神经网络自动提取图像的结构信息等特征,同时利用卷... 为了有效利用深度学习技术自动提取特征的能力,并解决当训练样本量减少或者迭代次数降低时识别性能急速下降的问题,提出了基于Fisher准则的深度学习算法.该方法在前馈传播时,采用卷积神经网络自动提取图像的结构信息等特征,同时利用卷积网络共享权值和池化、下采样等方法减少了权值个数,降低了模型复杂度;在反向传播权值调整时,采用了基于Fisher的约束准则.在权值的迭代调整时既考虑误差的最小化,又同时让样本保持类内距离小,类间距离大,从而使权值能更加快速地逼近有利于分类的最优值,当样本量不足或训练迭代次数不多时可有效地提高系统的识别率.大量的实验结果证明:该基于Fisher准则的混合深度学习算法在标签样本不足或者较少训练次数的情况下依然能达到较好的识别效果. 展开更多
关键词 深度学习 卷积神经网络 FISHER准则 反向传播(BP)算法 人脸识别 手写字识别
在线阅读 下载PDF
融合多尺度注意力神经网络的港口起重装备故障时序数据预测方法 被引量:1
6
作者 雷鹏 谢敬玲 +4 位作者 许洪祖 焦锋 魏立明 张忠岩 吕成兴 《机电工程》 北大核心 2025年第2期277-286,共10页
近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注... 近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注意力机制港口装备故障时序数据预测方法。首先,采用了融合非线性策略与混沌映射的改进灰狼优化算法(IGWO),自适应地确定了变分模态分解(VMD)的模态数与惩罚因子;然后,将变分模态分解得到的本征模态函数进一步作为融合多尺度注意力神经网络(FMANN)模型的时序输入,进行了多尺度通道特征融合;最后,对各个本征模态函数的预测结果进行了融合,得到了最终预测结果。研究结果表明:FMANN模型在回转机构数据集上的均方根误差(RMSE)为0.001 12,平均绝对百分比误差(MAPE)为6.396 3%,决定系数为0.999 8;相比于其他预测模型,FMANN预测效果更加拟合实际数据。FMANN模型能够准确地预测设备轴承的时序振动,有望为未来实际工业生产提供一条新思路。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 注意力机制 灰狼优化算法 融合多尺度注意力神经网络 深度可分离卷积
在线阅读 下载PDF
多层卷积神经网络深度学习算法可移植性分析 被引量:3
7
作者 肖堃 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期420-424,共5页
在现实环境下,出现恶意用户或攻击者对机器学习算法的攻击;在应用过程中,机器学习算法也会受到物体形状、位移、尺度、光照、背景等因素的影响。针对这些使用过程中所产生的安全性问题,本文提出了基于多层卷积神经网络深度学习算法的图... 在现实环境下,出现恶意用户或攻击者对机器学习算法的攻击;在应用过程中,机器学习算法也会受到物体形状、位移、尺度、光照、背景等因素的影响。针对这些使用过程中所产生的安全性问题,本文提出了基于多层卷积神经网络深度学习算法的图像识别方法,并对其可移植性进行分析,通过对抗性训练提高模型泛化能力来防御对抗样例攻击。针对可用性攻击,在前向传播过程中,采用训练好的多层卷积神经网络深度学习模型自动提取输入图像特征,并利用模型权值共享、更新、下采样等操作对输入图像做降采样处理,降低计算复杂度;在反向传播过程中,利用delta法则和Fisher准则,以及基于类内距离和类间距离的能量约束函数实时调整多层卷积神经网络深度学习模型参数,计算模型输出层各个输出单元的残差,使模型权值能够更加快速收敛到有利于图像识别的最优值。测试结果表明:多层卷积神经网络深度学习算法在图像识别领域的应用具有识别准确率和鲁棒性较高,耗时较短的优点,从理论和实验2方面证明了算法的可移植性。 展开更多
关键词 多层卷积神经网络 深度学习算法 可移植性 分析 图像识别 拟合效果 delta法则 FISHER准则
在线阅读 下载PDF
多GPU环境下的卷积神经网络并行算法 被引量:5
8
作者 王裕民 顾乃杰 张孝慈 《小型微型计算机系统》 CSCD 北大核心 2017年第3期536-539,共4页
随着深度学习的不断发展,卷积神经网络凭借其优异的识别性能,在图像识别、语音识别等领域受到了越来越多的关注.卷积神经网络的研究需要进行充分的实验,然而其训练过程通常需要大量时间.使用高性能GPU可以加速卷积神经网络的训练过程,... 随着深度学习的不断发展,卷积神经网络凭借其优异的识别性能,在图像识别、语音识别等领域受到了越来越多的关注.卷积神经网络的研究需要进行充分的实验,然而其训练过程通常需要大量时间.使用高性能GPU可以加速卷积神经网络的训练过程,但是由于GPU的特殊结构,进行多GPU的扩展时难以取得令人满意的加速比.提出一种在多GPU下的数据并行算法,与传统的客户机/服务器结构不同,该算法以环形结构组织GPU,更有利于多GPU扩展,系统不会受限于服务器节点的性能.此外还通过并行化单个GPU的计算与传输任务,提高GPU的使用效率.实验结果表明,使用4个GPU时,该算法分别在mnist和cifar10数据集上取得了3.77和3.79倍的加速比,并且对网络的识别性能无显著影响. 展开更多
关键词 卷积神经网络 GPU 随机梯度下降 并行算法
在线阅读 下载PDF
深度卷积神经网络下的图像风格迁移算法 被引量:16
9
作者 李慧 万晓霞 《计算机工程与应用》 CSCD 北大核心 2020年第2期176-183,共8页
针对图像风格迁移中出现的图像扭曲、内容细节丢失的问题,提出一种基于深度卷积神经网络的带有语义分割的图像风格迁移算法。定义内容图像损失和风格图像损失函数;对内容图像与风格图像分别进行语义分割,并将Matting算法作用在内容图像... 针对图像风格迁移中出现的图像扭曲、内容细节丢失的问题,提出一种基于深度卷积神经网络的带有语义分割的图像风格迁移算法。定义内容图像损失和风格图像损失函数;对内容图像与风格图像分别进行语义分割,并将Matting算法作用在内容图像上,使用最小二乘惩罚函数来增强图片边缘真实性;进行图像的内容重建和风格重建生成新的图像。分析比较Neural Style改进方法、CNNMRF方法和带有语义分割的图像风格迁移方法生成的图像。实验结果和质量评估表明,70%带有语义分割的图像风格迁移方法生成的图像没有明显的图像扭曲,且内容细节完好。所以,该方法可以解决图像扭曲和细节丢失的问题,使内容丰富的图像可以得到精确的风格迁移。 展开更多
关键词 深度卷积神经网络 图像风格迁移 语义分割 Matting算法
在线阅读 下载PDF
基于迁移学习的并行卷积神经网络牦牛脸识别算法 被引量:7
10
作者 陈争涛 黄灿 +2 位作者 杨波 赵立 廖勇 《计算机应用》 CSCD 北大核心 2021年第5期1332-1336,共5页
为了在牦牛养殖过程中对牦牛实现精确管理,需要对牦牛的身份进行识别,而牦牛脸识别是一种可行的牦牛身份识别方式。然而已有的基于神经网络的牦牛脸识别算法中存在牦牛脸数据集特征多、神经网络训练时间长的问题,因此,借鉴迁移学习的方... 为了在牦牛养殖过程中对牦牛实现精确管理,需要对牦牛的身份进行识别,而牦牛脸识别是一种可行的牦牛身份识别方式。然而已有的基于神经网络的牦牛脸识别算法中存在牦牛脸数据集特征多、神经网络训练时间长的问题,因此,借鉴迁移学习的方法并结合视觉几何组网络(VGG)和卷积神经网络(CNN),提出了一种并行CNN(Parallel-CNN)算法用来识别牦牛的面部信息。首先,利用已有的VGG16网络对牦牛脸图像数据进行迁移学习以及初次提取牦牛的面部信息特征;然后,将提取到的不同层次的特征进行维度变换并输入到Parallel-CNN中进行二次特征提取;最后,利用两个分离的全连接层对牦牛脸图像进行分类。实验结果表明:Parallel-CNN能够对不同角度、光照和姿态的牦牛脸进行识别,在含有300头牦牛的90 000张牦牛脸图像的测试数据集上,所提算法的识别准确率达到91.2%。所提算法可以对牦牛身份进行精确识别,从而帮助牦牛养殖场实现对牦牛的智能化管理。 展开更多
关键词 牦牛脸识别 深度学习 迁移学习 卷积神经网络 并行网络
在线阅读 下载PDF
基于卷积神经网络的语句级新闻分类算法 被引量:11
11
作者 曾凡锋 李玉珂 肖珂 《计算机工程与设计》 北大核心 2020年第4期978-982,共5页
针对传统的中文文本分类在海量的互联网信息中难以胜任的现状,提出一种语句级的卷积神经网络中文新闻分类方案。通过信息提取算法从长短不一的新闻数据中提取固定大小的新闻摘要,压缩输入量的同时统一输入格式。信息提取时,通过对TF-ID... 针对传统的中文文本分类在海量的互联网信息中难以胜任的现状,提出一种语句级的卷积神经网络中文新闻分类方案。通过信息提取算法从长短不一的新闻数据中提取固定大小的新闻摘要,压缩输入量的同时统一输入格式。信息提取时,通过对TF-IDF算法进行改进提升新闻摘要的质量,结合word2vec技术和卷积神经网络完成文本分类任务。与传统方法相比,词向量模型的引入弥补了传统词袋模型的缺陷,且语句的语义远比词的更加全面,使用语句进行分类更加可靠。通过实验对比验证了该方案具有较好的性能。 展开更多
关键词 文本分类 深度学习 卷积神经网络 词向量 TF-IDF算法 信息抽取
在线阅读 下载PDF
基于快速滤波算法的卷积神经网络加速器设计 被引量:6
12
作者 王巍 周凯利 +2 位作者 王伊昌 王广 袁军 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2578-2584,共7页
为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据... 为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据,并通过标志信号启动卷积计算加速单元来实现逐层加速;其次,设计了基于4并行快速滤波算法的卷积计算加速单元,该单元采用若干小滤波器组成的复杂度较低的并行滤波结构来实现。利用手写数字集MNIST对所设计的CNN加速器电路进行测试,结果表明:在xilinx kintex7平台上,输入时钟为100 MHz时,电路的计算性能达到了20.49 GOPS,识别率为98.68%。可见通过减少CNN的计算量,能够提高电路的计算性能。 展开更多
关键词 卷积神经网络 快速滤波算法 FPGA 并行结构
在线阅读 下载PDF
基于CS优化深度学习卷积神经网络的目标检测算法 被引量:7
13
作者 谌颃 孙道宗 《机床与液压》 北大核心 2020年第6期187-192,共6页
目前对于形状比较复杂且密集摆放的工件,传统的工业机器人视觉分拣技术已经无法有效检测和识别。因此,为了提高生产线上分拣工件检测的准确率,提出了一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化深度学习卷积神经网络(Convolutional N... 目前对于形状比较复杂且密集摆放的工件,传统的工业机器人视觉分拣技术已经无法有效检测和识别。因此,为了提高生产线上分拣工件检测的准确率,提出了一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化深度学习卷积神经网络(Convolutional Neural Network,CNN)的目标检测算法。首先对视觉分拣系统的组成进行了分析。然后采用经典的Faster R-CNN的模型结构来实现目标检测,并将CS优化算法应用到CNN模型的参数训练中,解决了反向传播的局部最优问题,同时提高了迭代速度。工件检测实验结果表明:相比于传统的CNN模型,提出CS-CNN模型具有更好的目标检测的准确率,提高了网络的收敛速度。 展开更多
关键词 深度学习 卷积神经网络 工业机器人 视觉分拣 目标检测 布谷鸟搜索算法
在线阅读 下载PDF
基于多GPU的深度神经网络训练算法 被引量:8
14
作者 顾乃杰 赵增 +1 位作者 吕亚飞 张致江 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1042-1046,共5页
深度学习由于出色的识别效果在模式识别及机器学习领域受到越来越多的关注.作为深度神经网络算法的重要组成部分,误差反向传播算法的执行效率已经成为制约深度学习领域发展的瓶颈.提出一种基于Tesla K10 GPU的误差反向传播算法,该算法... 深度学习由于出色的识别效果在模式识别及机器学习领域受到越来越多的关注.作为深度神经网络算法的重要组成部分,误差反向传播算法的执行效率已经成为制约深度学习领域发展的瓶颈.提出一种基于Tesla K10 GPU的误差反向传播算法,该算法具有负载均衡,可扩展性高的特点.本算法充分利用PCI-E3.0传输特性,并结合peer-to-peer以及异步传输的特性以降低计算任务在划分和合并过程中带来的额外开销.除此之外,文章通过对算法流程的重构,实现算法数据相关性的解耦合,从而使得有更多的计算任务可用来掩盖传输过程.实验证明,该算法拥有双卡超过1.87的并行加速比,且算法执行过程中不会引入计算误差,可有效保证训练过程中的收敛效率,拥有理想的并行加速效果. 展开更多
关键词 深度学习 神经网络 GPGPU 并行算法
在线阅读 下载PDF
基于并行深度卷积神经网络的舰船通信异常数据检测研究 被引量:3
15
作者 邓雪阳 邓达平 苏万靖 《舰船科学技术》 北大核心 2023年第15期119-122,共4页
为了提高通信异常数据检测效果,设计基于并行深度卷积神经网络算法的大规模舰船通信异常数据检测方法。采集大规模舰船通信数据,采用小波变换对数据实施降噪处理,将降噪后数据输入并行深度卷积神经网络中,经过模型训练提取特征,利用Soft... 为了提高通信异常数据检测效果,设计基于并行深度卷积神经网络算法的大规模舰船通信异常数据检测方法。采集大规模舰船通信数据,采用小波变换对数据实施降噪处理,将降噪后数据输入并行深度卷积神经网络中,经过模型训练提取特征,利用Softmax分类函数得出舰船通信异常数据特征,输出舰船通信异常数据检测结果。实验结果表明:该方法可有效实现大规模舰船通信异常数据检测,其加速比最高,并行效果最优;具有较强的大规模舰船通信数据集检测能力,提高大规模舰船通信异常数据检测效果。 展开更多
关键词 并行深度 卷积神经网络 大规模舰船 通信异常数据 检测方法 数据预处理
在线阅读 下载PDF
基于深度卷积神经网络的人物检测改进算法 被引量:3
16
作者 周杨 杨文柱 申远 《计算机应用与软件》 北大核心 2022年第7期215-221,共7页
基于深度卷积神经网络的人物检测方法是目前检测效果最好的方法。在同等环境下,YOLOv3运行速度最快,但其采用的非极大值抑制算法(NMS)导致很多正确的检测框被错误移除。通过加入取回算法来恢复被NMS错误移除掉的人物检测框,而且将NMS替... 基于深度卷积神经网络的人物检测方法是目前检测效果最好的方法。在同等环境下,YOLOv3运行速度最快,但其采用的非极大值抑制算法(NMS)导致很多正确的检测框被错误移除。通过加入取回算法来恢复被NMS错误移除掉的人物检测框,而且将NMS替换为Soft-NMS进一步提高了准确率。在PASCAL VOC数据集上的实验表明,使用Soft-NMS和取回算法改进的YOLOv3相比于原算法提升了大约3.1百分点的准确率,同时运行速度没有发生太多的变化。 展开更多
关键词 人物检测 非极大值抑制 取回算法 深度卷积神经网络
在线阅读 下载PDF
基于改进BP算法在深度神经网络学习中的研究 被引量:6
17
作者 黄培 《机械强度》 CAS CSCD 北大核心 2018年第4期796-801,共6页
深度学习能够使包含多个处理层的计算模型去学习含有多层次抽象表示的数据。这种学习方式在最先进的语音识别、视觉物体识别、物体检测以及许多其它领域,比如生物基因学和医学等都带来了明显的改善。深度学习能够发现大数据中的复杂结构... 深度学习能够使包含多个处理层的计算模型去学习含有多层次抽象表示的数据。这种学习方式在最先进的语音识别、视觉物体识别、物体检测以及许多其它领域,比如生物基因学和医学等都带来了明显的改善。深度学习能够发现大数据中的复杂结构,而卷积神经网络作为深度学习的重要模型之一在处理语音、图像、视频和文本等方面带来了新的突破。它是利用BP算法来引导机器如何从前一层获取误差来调整本层的参数,从而使这些参数更有利于模型的计算。针对传统BP算法存在的收敛速度慢、常陷入局部极小点的不足,提出了一种快速的BP改进算法。利用改进后的卷积神经网络分别在数据集MNIST、英文字符识别以及医学图像中做实验验证,仿真结果表明了该算法的有效性。 展开更多
关键词 深度学习 卷积神经网络 改进BP算法
在线阅读 下载PDF
融合卷积神经网络与Adaboost算法的病害松树识别 被引量:3
18
作者 胡根生 殷存军 +2 位作者 张艳 方怡 朱艳秋 《安徽大学学报(自然科学版)》 CAS 北大核心 2019年第2期44-53,共10页
针对无人机平台获取的高分辨率可见光松树图像,提出一种结合深度卷积神经网络和Adaboost算法的病害松树识别方法,解决传统机器学习方法识别病害松树精确度不高问题.首先利用卷积神经网络训练病害松树模型再利用训练模型将地物中的田地... 针对无人机平台获取的高分辨率可见光松树图像,提出一种结合深度卷积神经网络和Adaboost算法的病害松树识别方法,解决传统机器学习方法识别病害松树精确度不高问题.首先利用卷积神经网络训练病害松树模型再利用训练模型将地物中的田地、裸土及黑影等复杂信息剔除掉,提取病害松树、健康松树及黑影区域的颜色和纹理特征,依据提取的特征在剔除地物干扰项后的决策层使用Adaboost分类器进行目标识别.实验结果表明,该方法相较传统的K-means聚类、支持向量机、Adaboost算法、BP神经网络、VGG(visual geometry group)算法等在识别精确度方面有显著提高. 展开更多
关键词 深度卷积神经网络 ADABOOST算法 机器学习 目标识别 支持向量机
在线阅读 下载PDF
卷积神经网络算法在工件抓取中的应用 被引量:4
19
作者 田跃欣 吴芬芬 《机床与液压》 北大核心 2020年第15期76-80,共5页
为提高机械手臂夹取物件的准确率,提出基于深度学习法的3D视觉辨识与抓取系统。该视觉系统结合GPU和深度影像Open CV等函数库,分别进行影像拾取、深度数据运算、坐标转换、影像轮廓搜寻和卷积类神经网络模型训练等。采用YOLOv2算法判别... 为提高机械手臂夹取物件的准确率,提出基于深度学习法的3D视觉辨识与抓取系统。该视觉系统结合GPU和深度影像Open CV等函数库,分别进行影像拾取、深度数据运算、坐标转换、影像轮廓搜寻和卷积类神经网络模型训练等。采用YOLOv2算法判别目标物体的种类和中心点,并利用轮廓搜寻方法找出物体的角度信息,作为机械手臂操作目标点;通过坐标转换将相机坐标转为机械手臂坐标,由TCP/IP通信传至运动控制系统进行物件夹取。实验结果表明:不同位置的所有零件辨识准确率均在82%以上,抓取误差在1~4 mm内,符合工业生产的要求。 展开更多
关键词 深度学习 卷积神经网络算法 目标检测 YOLOv2算法 工件抓取 机器视觉
在线阅读 下载PDF
利用稀疏语义结合双层深度卷积神经网络的敏感图像检测方法 被引量:2
20
作者 如先姑力·阿布都热西提 亚森·艾则孜 孙国梓 《计算机应用研究》 CSCD 北大核心 2020年第5期1557-1560,1565,共5页
互联网技术的飞速发展导致敏感内容图像由原先基本隐蔽的内容交换变为海量的数据共享,传统基于图像特征提取的敏感内容检测方法不再适用。针对上述难点,提出基于稀疏语义和双层深度卷积神经网络相结合的敏感内容检测方法。上层网络首先... 互联网技术的飞速发展导致敏感内容图像由原先基本隐蔽的内容交换变为海量的数据共享,传统基于图像特征提取的敏感内容检测方法不再适用。针对上述难点,提出基于稀疏语义和双层深度卷积神经网络相结合的敏感内容检测方法。上层网络首先进行训练样本的预处理,并通过构造图像的稀疏语义表示作为神经网络的输入;而下层网络则进一步考虑第三方管控机制(如政府代理等),提出针对特定群体的敏感内容图像检测方法。与现有常用敏感内容图像检测方法相比,该检测方法可有效降低训练样本数量,且检测精度比传统图像检测方法(如基于视觉词袋方法等)提升7%以上。 展开更多
关键词 敏感图像内容检测 双层卷积神经网络 深度学习算法 稀疏语义表示 视觉词袋 皮肤检测器
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部