When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use...When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.展开更多
A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics...A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.展开更多
基金Project(51274188)supported by the National Natural Science Foundation of China
文摘When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.
基金Projects(11772188,11132007,11202126)supported by the National Natural Science Foundation of ChinaProject(11ZR1417000)supported by the Natural Science Foundation of Shanghai,China
文摘A forward recursive formulation based on corotational frame is proposed for flexible planar beams with large displacement.The traditional recursive formulation has been successfully used for flexible mutibody dynamics to improve the computational efficiency based on floating frame,in which the assumption of small strain and deflection is adopted.The proposed recursive formulation could be used for large displacement problems based on the corotational frame.It means that the recursive scheme is used not only for adjacent bodies but also for adjacent beam elements.The nodal relative rotation coordinates of the planar beam are used to obtain equations with minimal generalized coordinates in present formulation.The proposed formulation is different from absolute nodal coordinate formulation and the geometrically exact beam formulation in which the absolute coordinates are used.The recursive scheme and minimal set of dynamic equations lead to a high computational efficiency in numerical integration.Numerical examples are carried out to demonstrate the accuracy and validity of this formulation.For all of the examples,the results of the present formulation are in good agreement with results obtained using commercial software and the published results.Moreover,it is shown that the present formulation is more efficient than the formulation in ANSYS based on GEBF.