电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短...电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短时记忆网络(LSTM)的短期电价预测模型.ICEEMDAN将原始数据分解为多个本征模态函数(IMF)和一个残差序列,然后将IMF分量重构为高频,中频和低频三个子序列,将子序列和残差序列分别与相关因素结合,重构为四个多维特征矩阵,输入BO-LSTM模型进行训练,最后得到预测结果.用西班牙国家电网公司Red Electric Espana运营数据进行算例分析,结果表明ICEEMDAN-BO-LSTM模型具有更高的准确度,在电价跳跃点和峰值点处预测结果表现出色,与其他方法相比预测效果更好,对能源企业和国家电力市场调控策略具有实用价值.展开更多
为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法...为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法平滑风电出力,同时减小平滑结果的滞后性,得到风电并网功率和混合储能系统(hybrid energy storage system,HESS)参考功率。为了合理分配HESS的内部功率,借助CEEMDAN分解HESS的参考功率,得到高低频分量。综合考虑HESS功率和容量、荷电状态(state of charge,SOC)与负荷缺点率等因素,构建以年综合成本最小为目标的容量优化配置模型并采用改进阿基米德优化算法求解。基于实际算例进行仿真分析,结果表明,与原始风电并网相比,HESS配置方案将波动率减少了13.538%,平滑度提高了16.057%。相较于传统单一储能平抑效果更加明显,减少了容量配置。同时,对比传统阿基米德优化算法节省了15.325%的投资成本。展开更多
文摘电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短时记忆网络(LSTM)的短期电价预测模型.ICEEMDAN将原始数据分解为多个本征模态函数(IMF)和一个残差序列,然后将IMF分量重构为高频,中频和低频三个子序列,将子序列和残差序列分别与相关因素结合,重构为四个多维特征矩阵,输入BO-LSTM模型进行训练,最后得到预测结果.用西班牙国家电网公司Red Electric Espana运营数据进行算例分析,结果表明ICEEMDAN-BO-LSTM模型具有更高的准确度,在电价跳跃点和峰值点处预测结果表现出色,与其他方法相比预测效果更好,对能源企业和国家电力市场调控策略具有实用价值.
文摘为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法平滑风电出力,同时减小平滑结果的滞后性,得到风电并网功率和混合储能系统(hybrid energy storage system,HESS)参考功率。为了合理分配HESS的内部功率,借助CEEMDAN分解HESS的参考功率,得到高低频分量。综合考虑HESS功率和容量、荷电状态(state of charge,SOC)与负荷缺点率等因素,构建以年综合成本最小为目标的容量优化配置模型并采用改进阿基米德优化算法求解。基于实际算例进行仿真分析,结果表明,与原始风电并网相比,HESS配置方案将波动率减少了13.538%,平滑度提高了16.057%。相较于传统单一储能平抑效果更加明显,减少了容量配置。同时,对比传统阿基米德优化算法节省了15.325%的投资成本。