本文提出了一种离散蝙蝠算法求解带时间窗的车辆路径问题(vehicle routing problem with time window).该算法提出了蝙蝠位置的定义、速度的定义、位置更新操作、速度更新操作、频率更新操作,并采用惩罚机制与向量比较机制相结合的方法...本文提出了一种离散蝙蝠算法求解带时间窗的车辆路径问题(vehicle routing problem with time window).该算法提出了蝙蝠位置的定义、速度的定义、位置更新操作、速度更新操作、频率更新操作,并采用惩罚机制与向量比较机制相结合的方法处理相关约束条件.该算法引入了随机插入策略、最少客户车辆插入搜索、普通插入搜索、交换搜索、带时间窗的2-Opt搜索等策略来扩大搜索空间、加强算法的收敛效率.实验结果表明:所提出算法具有较强的寻优能力、较高的鲁棒性、较少的时间耗费;本文所采用的关键参数值和策略能提高所提出算法的性能;通过假设检验证明了所提出算法与对比算法之间的算法性能均有显著性差异.展开更多
针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
针对物流配送中带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),建立了数学模型,并设计了求解VRPTW的文化基因算法。种群搜索采用遗传算法的进化模式,局部搜索采用禁忌搜索机制,并结合可行邻域结构避免对不...针对物流配送中带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),建立了数学模型,并设计了求解VRPTW的文化基因算法。种群搜索采用遗传算法的进化模式,局部搜索采用禁忌搜索机制,并结合可行邻域结构避免对不可行解的搜索,以提高搜索效率。与单纯的遗传算法和禁忌搜索算法进行对比实验,表明该算法是求解VRPTW的一种有效方法。展开更多
文摘本文提出了一种离散蝙蝠算法求解带时间窗的车辆路径问题(vehicle routing problem with time window).该算法提出了蝙蝠位置的定义、速度的定义、位置更新操作、速度更新操作、频率更新操作,并采用惩罚机制与向量比较机制相结合的方法处理相关约束条件.该算法引入了随机插入策略、最少客户车辆插入搜索、普通插入搜索、交换搜索、带时间窗的2-Opt搜索等策略来扩大搜索空间、加强算法的收敛效率.实验结果表明:所提出算法具有较强的寻优能力、较高的鲁棒性、较少的时间耗费;本文所采用的关键参数值和策略能提高所提出算法的性能;通过假设检验证明了所提出算法与对比算法之间的算法性能均有显著性差异.
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘针对物流配送中带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),建立了数学模型,并设计了求解VRPTW的文化基因算法。种群搜索采用遗传算法的进化模式,局部搜索采用禁忌搜索机制,并结合可行邻域结构避免对不可行解的搜索,以提高搜索效率。与单纯的遗传算法和禁忌搜索算法进行对比实验,表明该算法是求解VRPTW的一种有效方法。