函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
局部均值分解(Local mean decomposition,简称LMD)方法通过滑动平均方法平滑局部均值线段和局部幅值线段得到局部均值函数和包络估计函数,从而实现信号的分解。但滑动平均方法会产生相位差以及平滑步长的选择具有一定的主观性,这样会使...局部均值分解(Local mean decomposition,简称LMD)方法通过滑动平均方法平滑局部均值线段和局部幅值线段得到局部均值函数和包络估计函数,从而实现信号的分解。但滑动平均方法会产生相位差以及平滑步长的选择具有一定的主观性,这样会使分解结果不理想。对LMD方法进行了改进,采用有理样条插值函数(Rationalspline)求取信号的上下包络线,然后通过上下包络线计算信号的局部均值函数和包络估计函数,克服了原LMD方法中采用滑动平均方法带来的缺陷。通过对仿真信号以及滚动轴承故障振动信号的分析,表明改进后的LMD方法优于原LMD方法。展开更多
针对局部均值分解方法(Local mean decomposition,LMD)的乘积函数(Product function,PF)判据问题,根据乘积函数具有正交性的特点,将正交性判据(Orthogonality criterion,OC)引入了LMD方法。即将每次迭代后的OC值与预先确定的阈值进行比...针对局部均值分解方法(Local mean decomposition,LMD)的乘积函数(Product function,PF)判据问题,根据乘积函数具有正交性的特点,将正交性判据(Orthogonality criterion,OC)引入了LMD方法。即将每次迭代后的OC值与预先确定的阈值进行比较,以此来确定乘积函数迭代过程的终止点。通过对仿真信号和实际信号的分析,验证了采用正交性判据确定的乘积函数满足正交性要求,反映了信号内含的物理信息,从而实现了对信号正确的分解。展开更多
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
文摘局部均值分解(Local mean decomposition,简称LMD)方法通过滑动平均方法平滑局部均值线段和局部幅值线段得到局部均值函数和包络估计函数,从而实现信号的分解。但滑动平均方法会产生相位差以及平滑步长的选择具有一定的主观性,这样会使分解结果不理想。对LMD方法进行了改进,采用有理样条插值函数(Rationalspline)求取信号的上下包络线,然后通过上下包络线计算信号的局部均值函数和包络估计函数,克服了原LMD方法中采用滑动平均方法带来的缺陷。通过对仿真信号以及滚动轴承故障振动信号的分析,表明改进后的LMD方法优于原LMD方法。
文摘针对局部均值分解方法(Local mean decomposition,LMD)的乘积函数(Product function,PF)判据问题,根据乘积函数具有正交性的特点,将正交性判据(Orthogonality criterion,OC)引入了LMD方法。即将每次迭代后的OC值与预先确定的阈值进行比较,以此来确定乘积函数迭代过程的终止点。通过对仿真信号和实际信号的分析,验证了采用正交性判据确定的乘积函数满足正交性要求,反映了信号内含的物理信息,从而实现了对信号正确的分解。