期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进的局部敏感判别分析的步态识别方法
1
作者 张善文 巨春飞 《计算机工程与应用》 CSCD 2012年第25期203-206,共4页
相对于人脸和指纹等广泛使用的生物特征识别手段而言,步态识别是一种相对新的非接触式的身份识别方法。提出了一种基于改进的局部敏感判别分析的步态识别方法。在真实的步态数据库上的实验结果表明,提出的步态识别方法是有效可行的。
关键词 生物特征 步态识别 局部敏感判别分析 改进的局部敏感判别分析
在线阅读 下载PDF
基于自适应邻域选择的正交局部敏感判别分析 被引量:3
2
作者 高玮军 白万荣 +1 位作者 公维军 陈作汉 《计算机工程与设计》 CSCD 北大核心 2012年第5期1968-1972,共5页
维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discrimi-nant analysis,LSDA),可以很好地解决维数灾难问题。且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,... 维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discrimi-nant analysis,LSDA),可以很好地解决维数灾难问题。且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,利用自适应邻域选择方法来度量邻域,同时,引入施密特正交化获得正交投影矩阵,提出一种自适应邻域选择的正交局部敏感判别分析算法。在ORL和YALE人脸数据库上进行实验,实验结果表明了该算法的有效性。 展开更多
关键词 局部敏感判别分析 流形学习 邻域选择 降维 人脸识别
在线阅读 下载PDF
基于二维局部敏感判别分析法的雷达目标识别 被引量:1
3
作者 张善文 张传雷 张云龙 《电光与控制》 北大核心 2013年第4期10-12,共3页
由于在不同的观察角度、位置以及光照等条件下雷达目标图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于飞机目标图像识别。基于二维局部敏感判别分析(2DLSDA),提出了一种雷达目标识别方法。首先构造类内和类间邻... 由于在不同的观察角度、位置以及光照等条件下雷达目标图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于飞机目标图像识别。基于二维局部敏感判别分析(2DLSDA),提出了一种雷达目标识别方法。首先构造类内和类间邻域关系图,计算两个邻域图上的权重矩阵;然后基于Schur分解求出两个正交变换矩阵,得到映射矩阵,对观察数据进行维数约简,由此有效地克服小样本问题。对飞机目标的分类实验结果表明,该方法是有效可行的。 展开更多
关键词 雷达 目标识别 二维局部敏感判别分析 维数约简
在线阅读 下载PDF
基于局部敏感判别分析的路网状态特征提取模型研究 被引量:3
4
作者 徐丽香 王云鹏 于海洋 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第3期95-100,共6页
为简化路网状态表达,最大限度地实现路网信息增值,本文构建了从海量历史交通数据中提取特征参量来表达路网运行状态的模型.模型选取城市区域路网的流量、车速和密度数据,综合考虑交通数据的非线性和相关性,基于自适应邻域选择的局部敏... 为简化路网状态表达,最大限度地实现路网信息增值,本文构建了从海量历史交通数据中提取特征参量来表达路网运行状态的模型.模型选取城市区域路网的流量、车速和密度数据,综合考虑交通数据的非线性和相关性,基于自适应邻域选择的局部敏感判别分析算法,实现城市路网数据特征提取.通过实例验证了模型的有效性.结果表明:本文得到的特征参量能有效地描述路网状态变化的24 h周期性,可直观反映早晚高峰现象及工作日与周末的区别性;与核主成分分析算法比较,模型得到的特征参量具有可分性更好的特点,可以表达宏观路网运行状态,为交通管理者提供决策依据. 展开更多
关键词 城市交通 特征提取 局部敏感判别分析 路网状态 自适应邻域选择
在线阅读 下载PDF
全局与局部判别信息融合的转子故障数据集降维方法研究 被引量:36
5
作者 赵孝礼 赵荣珍 《自动化学报》 EI CSCD 北大核心 2017年第4期560-567,共8页
针对传统的数据降维方法无法兼顾保持全局特征信息与局部判别信息的问题,提出一种核主元分析(Kernel principal component analysis,KPCA)和正交化局部敏感判别分析(Orthogonal locality sensitive discriminant analysis,OLSDA)相结合... 针对传统的数据降维方法无法兼顾保持全局特征信息与局部判别信息的问题,提出一种核主元分析(Kernel principal component analysis,KPCA)和正交化局部敏感判别分析(Orthogonal locality sensitive discriminant analysis,OLSDA)相结合的转子故障数据集降维方法.该方法首先利用KPCA算法有效降低数据集的相关性、消除冗余属性,由此实现了最大程度地保留原始数据全局非线性信息的作用;然后利用OLSDA算法充分挖掘出数据的局部流形结构信息,达到了提取出具有高判别力低维本质特征的目的.上述方法的特点是通过同时进行的正交化处理可避免局部子空间结构发生失真,采用三维图直观显示出低维结果,以低维特征子集输入最近邻分类器(K-nearest neighbor,KNN)的识别率和聚类分析之类间距Sb、类内距Sw作为衡量降维效果的指标.实验表明该方法能够全面地提取出全局与局部判别信息,使故障分类更清晰,相应地识别准确率得到了明显提升.该研究可为解决高维和非线性机械故障数据集的可视化与分类问题,提供理论参考依据. 展开更多
关键词 故障诊断 数据可视化 数据降维 核主元分析 正交化局部敏感判别分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部