基于模块化多电平S换流器的柔性直流输电系统(Modular Multi-level ConverterHigh Voltage Direct Current,MMC-HVDC)在交流电网发生不对称故障时,故障侧MMC的内部特性和系统运行都受到较大影响.基于MMC桥臂平均值模型,提出一种不对称...基于模块化多电平S换流器的柔性直流输电系统(Modular Multi-level ConverterHigh Voltage Direct Current,MMC-HVDC)在交流电网发生不对称故障时,故障侧MMC的内部特性和系统运行都受到较大影响.基于MMC桥臂平均值模型,提出一种不对称工况下MMCHVDC系统的优化控制策略,增强柔性直流输电系统的故障穿越能力.该策略主要由交流侧电流控制和环流抑制两个部分组成,在交流侧利用基于双二阶广义积分器锁相环(Phase Locked Loop Based on Double Second Order Generalized Integrator,DSOGI-PLL),在不对称工况下精确提取电压电流的正负序分量,配合双矢量控制器抑制负序电流,实现交流侧三相电流平衡.在MMC内部采用由PI控制器和重复控制器串联组成的嵌入式重复控制器(Proportional Integral and Repetitive Control,PI-RC)抑制环流中的二倍频正负零序分量,实现直流侧功率的恒定传输.在MATLAB/Simulink软件中搭建MMC-HVDC系统仿真模型,验证了所提优化控制策略的有效性.展开更多
基于模块多电平换流器的高压直流输电技术(High Voltage Direct Current Transmission Technology Based on Modular Multilevel Converte,MMC-HVDC)因开关频率低、运行损耗小及易于扩展多端网络等优点被广泛应用。直流侧短路故障因短...基于模块多电平换流器的高压直流输电技术(High Voltage Direct Current Transmission Technology Based on Modular Multilevel Converte,MMC-HVDC)因开关频率低、运行损耗小及易于扩展多端网络等优点被广泛应用。直流侧短路故障因短路电流大,故障电流上升速率快且难以抑制,对MMC-HVDC的发展造成了严重困扰。提出一种MMC-HVDC直流侧短路故障穿越控制方法,该方法基于对称双极接线的全桥型MMC-HVDC,且在直流侧采用高阻接地及金属回线,在发生直流侧短路故障时利用全桥型模块多电平换流器及时反转输出直流电压极性,实现故障电流抑制。同时利用金属回线构建成新的功率回路,快速恢复故障期间的有功功率传输。所提出的故障穿越策略,可以有效消除MMC-HVDC系统在发生直流侧短路故障时换流设备受到的故障电压及电流应力,同时避免换流器闭锁,防止功率缺失。最后,利用PSCAD/EMTDC仿真验证了所提出的直流侧短路故障穿越控制方法的有效性。展开更多
采用架空线柔性直流输电技术进行远距离输电是大规模风电场友好型并网的有效手段。针对架空线路易发生故障的问题,采用对称双极主接线并配置直流断路器是其主要解决方案之一。该文基于双极接线方案运行方式灵活及直流断路器的故障清除能...采用架空线柔性直流输电技术进行远距离输电是大规模风电场友好型并网的有效手段。针对架空线路易发生故障的问题,采用对称双极主接线并配置直流断路器是其主要解决方案之一。该文基于双极接线方案运行方式灵活及直流断路器的故障清除能力,提出风电经架空线基于模块化多电平换流器的柔性直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)并网的直流故障穿越协调控制策略。根据非故障极的功率转带能力,将故障清除后的不平衡功率分配划分为自消纳情景和非自消纳情景。针对自消纳情景,通过合理切换双极MMC的控制模式,可在提高非故障极功率转带能力的同时自主消纳不平衡功率,进而有效降低转移功率的影响范围;针对非自消纳情景,设计考虑风机转速约束的风电场超速减载协调控制策略,优化分配各风电机组承担的减载功率,充分利用其转子动能和捕获风功率的变化实现精确减载;同时通过控制模式切换使非故障极MMC自主运行于满载状态,减小单极退出运行对受端交流系统的影响。最后,基于Matlab/Simulink仿真模型验证所提直流故障穿越协调控制策略的有效性。展开更多
文摘基于模块化多电平S换流器的柔性直流输电系统(Modular Multi-level ConverterHigh Voltage Direct Current,MMC-HVDC)在交流电网发生不对称故障时,故障侧MMC的内部特性和系统运行都受到较大影响.基于MMC桥臂平均值模型,提出一种不对称工况下MMCHVDC系统的优化控制策略,增强柔性直流输电系统的故障穿越能力.该策略主要由交流侧电流控制和环流抑制两个部分组成,在交流侧利用基于双二阶广义积分器锁相环(Phase Locked Loop Based on Double Second Order Generalized Integrator,DSOGI-PLL),在不对称工况下精确提取电压电流的正负序分量,配合双矢量控制器抑制负序电流,实现交流侧三相电流平衡.在MMC内部采用由PI控制器和重复控制器串联组成的嵌入式重复控制器(Proportional Integral and Repetitive Control,PI-RC)抑制环流中的二倍频正负零序分量,实现直流侧功率的恒定传输.在MATLAB/Simulink软件中搭建MMC-HVDC系统仿真模型,验证了所提优化控制策略的有效性.
文摘基于模块多电平换流器的高压直流输电技术(High Voltage Direct Current Transmission Technology Based on Modular Multilevel Converte,MMC-HVDC)因开关频率低、运行损耗小及易于扩展多端网络等优点被广泛应用。直流侧短路故障因短路电流大,故障电流上升速率快且难以抑制,对MMC-HVDC的发展造成了严重困扰。提出一种MMC-HVDC直流侧短路故障穿越控制方法,该方法基于对称双极接线的全桥型MMC-HVDC,且在直流侧采用高阻接地及金属回线,在发生直流侧短路故障时利用全桥型模块多电平换流器及时反转输出直流电压极性,实现故障电流抑制。同时利用金属回线构建成新的功率回路,快速恢复故障期间的有功功率传输。所提出的故障穿越策略,可以有效消除MMC-HVDC系统在发生直流侧短路故障时换流设备受到的故障电压及电流应力,同时避免换流器闭锁,防止功率缺失。最后,利用PSCAD/EMTDC仿真验证了所提出的直流侧短路故障穿越控制方法的有效性。
文摘采用架空线柔性直流输电技术进行远距离输电是大规模风电场友好型并网的有效手段。针对架空线路易发生故障的问题,采用对称双极主接线并配置直流断路器是其主要解决方案之一。该文基于双极接线方案运行方式灵活及直流断路器的故障清除能力,提出风电经架空线基于模块化多电平换流器的柔性直流输电(modular multilevel converter based high voltage direct current,MMC-HVDC)并网的直流故障穿越协调控制策略。根据非故障极的功率转带能力,将故障清除后的不平衡功率分配划分为自消纳情景和非自消纳情景。针对自消纳情景,通过合理切换双极MMC的控制模式,可在提高非故障极功率转带能力的同时自主消纳不平衡功率,进而有效降低转移功率的影响范围;针对非自消纳情景,设计考虑风机转速约束的风电场超速减载协调控制策略,优化分配各风电机组承担的减载功率,充分利用其转子动能和捕获风功率的变化实现精确减载;同时通过控制模式切换使非故障极MMC自主运行于满载状态,减小单极退出运行对受端交流系统的影响。最后,基于Matlab/Simulink仿真模型验证所提直流故障穿越协调控制策略的有效性。