为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发...为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。展开更多
针对城市用水周期性及波动性特点,依据深圳市47个水厂及10个行政区2015-2019年逐月的供用水序列,考虑产业结构、人口特征及水厂供水的时间变化因子,提出KMeans聚类算法和季节性滑动平均自回归(seasonal moving average autoregressive,S...针对城市用水周期性及波动性特点,依据深圳市47个水厂及10个行政区2015-2019年逐月的供用水序列,考虑产业结构、人口特征及水厂供水的时间变化因子,提出KMeans聚类算法和季节性滑动平均自回归(seasonal moving average autoregressive,SMAAR)模型耦合方法,将水厂和行政区的时间序列进行聚类,分类别进行建模,预测2020年1-8月水厂及行政区的逐月供水数据,进而汇总出深圳市2020年1-8月的总供水数据,并与普通的自回归滑动平均(autore⁃gressive moving average,ARMA)模型对比。结果表明:建模对象范围越小预测结果的RE较小。SMAAR的性能比ARMA有显著提升,且在长期预报中依旧表现出较强的泛化能力,254 d逐日预测结果的平均相对误差只有0.08。本研究方法可为城市需水预测和供水调度管理提供支撑。展开更多
文摘为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。