期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Superstructured carbon materials:Progress and challenges in energy storage and conversion technologies
1
作者 ZUO Ming-xue HU Xia +6 位作者 KONG De-bin WEI Xin-ru QIN Xin LV Wei YANG Quan-Hong KANG Fei-yu ZHI Lin-jie 《新型炭材料(中英文)》 北大核心 2025年第4期962-972,共11页
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the... Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices. 展开更多
关键词 Carbon material application Superstructured carbons Energy storage and conversion
在线阅读 下载PDF
IABS:一个基于Spark的Apriori改进算法 被引量:12
2
作者 闫梦洁 罗军 +1 位作者 刘建英 侯传旺 《计算机应用研究》 CSCD 北大核心 2017年第8期2274-2277,共4页
Apriori算法是关联规则挖掘中最经典的算法之一,其核心问题是频繁项集的获取。针对经典Apriori算法存在的需多次遍历事务数据库及需产生候选项集等问题,首先通过转换存储结构、消除候选集产生过程等方法对Apriori算法进行优化;同时,随... Apriori算法是关联规则挖掘中最经典的算法之一,其核心问题是频繁项集的获取。针对经典Apriori算法存在的需多次遍历事务数据库及需产生候选项集等问题,首先通过转换存储结构、消除候选集产生过程等方法对Apriori算法进行优化;同时,随着大数据时代的到来,数据量与日俱增,传统算法面临巨大挑战,将优化的Apriori与Spark相结合,充分利用Spark的内存计算、弹性分布式数据集等优势,提出了IABS(improved Apriori algorithm based on Spark)。通过与已有的同类算法进行比较,IABS的数据可扩展性和节点可扩展性得以验证,并且在多种数据集上平均获得了23.88%的性能提升,尤其随着数据量的增长,性能提升更加明显。 展开更多
关键词 APRIORI算法 频繁项集 存储结构转换 SPARK 内存计算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部