针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更...针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.展开更多
基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评...基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评分矩阵的差分矩阵来表征局部结构信息,并作为新的目标函数来优化SVD推荐算法。在MovieLens和Netflix数据集合上的实验结果表明:与经典SVD算法相比,该优化算法能够用更少的迭代次数得到更准确的预测结果;与当前的其他算法相比,该优化算法在预测准确性上仅次于SVD++,在训练时间上具有显著优势。展开更多
奇异值分解(Singular Value Decomposition,SVD)可以将信号线性分解成一系列分量。通过深入分析基于Hankel矩阵的奇异值分解的基本原理和存在问题,揭示了奇异值分解的线性分解、重构分量频域无序和带通滤波等三个基本特性,据此提出了共...奇异值分解(Singular Value Decomposition,SVD)可以将信号线性分解成一系列分量。通过深入分析基于Hankel矩阵的奇异值分解的基本原理和存在问题,揭示了奇异值分解的线性分解、重构分量频域无序和带通滤波等三个基本特性,据此提出了共振加强奇异值分解方法。数值仿真结果表明:所提方法不但很好地解决了传统奇异值分解的频域无序性问题,而且可以在任意给定频率附近,实现给定带宽的线性带通滤波,完整提取原始信号的幅值、频率和相位特征。这是现有各信号处理方法都没有的优势。将所提方法成功应用于某型涡桨发动机振动监测中的特征频率提取,结果表明方法具有优异的特征提取效果。展开更多
为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将...为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将邻近距离单元作为参考,对其阵列协方差矩阵进行SVD,估计空域的海杂波子空间和噪声子空间;再利用子空间的正交性,从阵列回波信号中去除其在海杂波子空间的投影分量,达到在空域抑制海杂波的目的.该方法与现有的空域海杂波抑制方法相比,不需要预先知道海杂波的方位,利用阵列协方差矩阵的SVD来估计子空间,使得子空间的估计比较容易且准确,提高了输出信杂噪比(signal to clutter plus noise ratio,SCNR),有利于目标的检测.展开更多
为了解决评分数据的稀疏性和用户最近邻的精确性问题,文章提出了一种基于奇异值分解(singular value decomposition,SVD)和项目属性的协同过滤推荐算法。该算法首先采用SVD方法对用户-项目评分矩阵降维,得到用户矩阵和项目矩阵,根据项...为了解决评分数据的稀疏性和用户最近邻的精确性问题,文章提出了一种基于奇异值分解(singular value decomposition,SVD)和项目属性的协同过滤推荐算法。该算法首先采用SVD方法对用户-项目评分矩阵降维,得到用户矩阵和项目矩阵,根据项目矩阵计算项目间的评分相似度,同时根据项目属性计算项目间的属性相似度,将2种相似度的结果加权计算得到项目间的相似度,最后采用最近邻的方法预测目标用户对待评分项目的评分。在MovieLens数据集上的实验结果表明,该文所提出的方法可以有效应对用户评分稀疏的问题,并能提高推荐的准确性。展开更多
针对动态对比度增强磁共振灌注成像中脑血容积的计算,提出基于Hankel矩阵的奇异值分解(Singular Value Decomposition,SVD)算法。在奇异值数目的确定上采用差分谱量级差的研究方法,对算法进行理论推导与仿真模拟,得到较为理想的滤波效...针对动态对比度增强磁共振灌注成像中脑血容积的计算,提出基于Hankel矩阵的奇异值分解(Singular Value Decomposition,SVD)算法。在奇异值数目的确定上采用差分谱量级差的研究方法,对算法进行理论推导与仿真模拟,得到较为理想的滤波效果。由于成像过程存在测量噪声的干扰,分析了信噪比和示踪剂延迟对算法的影响。仿真结果表明,信噪比越低(SNR=5 d B),算法处理效果越明显;信噪比增高(SNR=100 d B),估计值偏差减小,结果越为准确。且该算法不受示踪剂延迟的影响。与传统奇异值分解算法相比,采用基于Hankel矩阵的奇异值算法可以更为准确地估计脑血容积。展开更多
文摘针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.
文摘基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评分矩阵的差分矩阵来表征局部结构信息,并作为新的目标函数来优化SVD推荐算法。在MovieLens和Netflix数据集合上的实验结果表明:与经典SVD算法相比,该优化算法能够用更少的迭代次数得到更准确的预测结果;与当前的其他算法相比,该优化算法在预测准确性上仅次于SVD++,在训练时间上具有显著优势。
文摘奇异值分解(Singular Value Decomposition,SVD)可以将信号线性分解成一系列分量。通过深入分析基于Hankel矩阵的奇异值分解的基本原理和存在问题,揭示了奇异值分解的线性分解、重构分量频域无序和带通滤波等三个基本特性,据此提出了共振加强奇异值分解方法。数值仿真结果表明:所提方法不但很好地解决了传统奇异值分解的频域无序性问题,而且可以在任意给定频率附近,实现给定带宽的线性带通滤波,完整提取原始信号的幅值、频率和相位特征。这是现有各信号处理方法都没有的优势。将所提方法成功应用于某型涡桨发动机振动监测中的特征频率提取,结果表明方法具有优异的特征提取效果。
文摘为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将邻近距离单元作为参考,对其阵列协方差矩阵进行SVD,估计空域的海杂波子空间和噪声子空间;再利用子空间的正交性,从阵列回波信号中去除其在海杂波子空间的投影分量,达到在空域抑制海杂波的目的.该方法与现有的空域海杂波抑制方法相比,不需要预先知道海杂波的方位,利用阵列协方差矩阵的SVD来估计子空间,使得子空间的估计比较容易且准确,提高了输出信杂噪比(signal to clutter plus noise ratio,SCNR),有利于目标的检测.
文摘为了解决评分数据的稀疏性和用户最近邻的精确性问题,文章提出了一种基于奇异值分解(singular value decomposition,SVD)和项目属性的协同过滤推荐算法。该算法首先采用SVD方法对用户-项目评分矩阵降维,得到用户矩阵和项目矩阵,根据项目矩阵计算项目间的评分相似度,同时根据项目属性计算项目间的属性相似度,将2种相似度的结果加权计算得到项目间的相似度,最后采用最近邻的方法预测目标用户对待评分项目的评分。在MovieLens数据集上的实验结果表明,该文所提出的方法可以有效应对用户评分稀疏的问题,并能提高推荐的准确性。
文摘针对动态对比度增强磁共振灌注成像中脑血容积的计算,提出基于Hankel矩阵的奇异值分解(Singular Value Decomposition,SVD)算法。在奇异值数目的确定上采用差分谱量级差的研究方法,对算法进行理论推导与仿真模拟,得到较为理想的滤波效果。由于成像过程存在测量噪声的干扰,分析了信噪比和示踪剂延迟对算法的影响。仿真结果表明,信噪比越低(SNR=5 d B),算法处理效果越明显;信噪比增高(SNR=100 d B),估计值偏差减小,结果越为准确。且该算法不受示踪剂延迟的影响。与传统奇异值分解算法相比,采用基于Hankel矩阵的奇异值算法可以更为准确地估计脑血容积。