针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间...针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间到VRPTW解空间的桥梁。同时为了提高算法的寻优能力,设计了由单点插入策略以及双点交换策略组成的局部搜索策略。通过solomon-50标准数据集中的九个算例进行仿真实验,实验结果证明了所提出算法的寻优能力和稳定性均优于对比算法,最优解误差相较于对比算法最多降低了38.32%。展开更多
为提高物流配送质量,在以传统的车辆配送行驶成本最小化为目标的基础上,兼顾顾客的满意度(配送及时性)和车辆数目最小化目标,建立优化的多目标带有时间窗的车辆路径问题(Ve-hicle Routeing Problem with Time Windows,VRPTW)模型.引用...为提高物流配送质量,在以传统的车辆配送行驶成本最小化为目标的基础上,兼顾顾客的满意度(配送及时性)和车辆数目最小化目标,建立优化的多目标带有时间窗的车辆路径问题(Ve-hicle Routeing Problem with Time Windows,VRPTW)模型.引用国际公认的车辆路径问题库中的数据作为算例,对3个目标函数都进行标幺化处理后,运用遗传算法进行求解,最终得出模型解的运算结果和时间都在理想范围之内,表明新模型是有效可行的.该模型的建立有助于有效地解决带有时间窗的车辆路径问题,不仅能够提高物流工作效率,而且能够为城市交通质量的提高提供保障.展开更多
考虑软时间窗下的车辆路径问题,客户点常伴有同时取送货的双重需求。针对此类问题,通过对软时间窗、车辆在途前后时间关系及二者融合问题进行刻画,同时将车辆行驶距离、车辆使用数、违反软时间窗总时间、客户满意度等纳入综合考量,构建...考虑软时间窗下的车辆路径问题,客户点常伴有同时取送货的双重需求。针对此类问题,通过对软时间窗、车辆在途前后时间关系及二者融合问题进行刻画,同时将车辆行驶距离、车辆使用数、违反软时间窗总时间、客户满意度等纳入综合考量,构建相应混合整数非线性规划(mixed integer nonlinear programming,MINLP)模型。设计相应多目标优化求解算法,运用理想点法对目标函数进行转化,将多目标优化问题转化为单目标优化问题。结合相应算例集,运用LINGO 17.0全局求解程序求得每组算例的全局最优解。结果表明,针对带软时间窗的同时取送货车辆路径问题(vehicle routing problem with simultaneous pick-up and delivery and soft time windows,VRPSPDSTW),所建模型及算法是有效且可行的。展开更多
带柔性时间窗的开放式车辆路径问题(Opening Vehicle Routing Problem with Flexible Time Windows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logis...带柔性时间窗的开放式车辆路径问题(Opening Vehicle Routing Problem with Flexible Time Windows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logistic映射引入基本蚁群算法,构建了三种混沌蚁群算法,并将其用于求解OVRPFTW.算例测试表明:Sine映射和Chebyshev映射能够明显地改进基本蚁群算法的优化性能,基于Sine映射和Chebyshev映射的混沌蚁群算法的求解性能优于基本蚁群算法和基于Logistic映射的混沌蚁群算法.展开更多
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间到VRPTW解空间的桥梁。同时为了提高算法的寻优能力,设计了由单点插入策略以及双点交换策略组成的局部搜索策略。通过solomon-50标准数据集中的九个算例进行仿真实验,实验结果证明了所提出算法的寻优能力和稳定性均优于对比算法,最优解误差相较于对比算法最多降低了38.32%。
文摘为提高物流配送质量,在以传统的车辆配送行驶成本最小化为目标的基础上,兼顾顾客的满意度(配送及时性)和车辆数目最小化目标,建立优化的多目标带有时间窗的车辆路径问题(Ve-hicle Routeing Problem with Time Windows,VRPTW)模型.引用国际公认的车辆路径问题库中的数据作为算例,对3个目标函数都进行标幺化处理后,运用遗传算法进行求解,最终得出模型解的运算结果和时间都在理想范围之内,表明新模型是有效可行的.该模型的建立有助于有效地解决带有时间窗的车辆路径问题,不仅能够提高物流工作效率,而且能够为城市交通质量的提高提供保障.
文摘考虑软时间窗下的车辆路径问题,客户点常伴有同时取送货的双重需求。针对此类问题,通过对软时间窗、车辆在途前后时间关系及二者融合问题进行刻画,同时将车辆行驶距离、车辆使用数、违反软时间窗总时间、客户满意度等纳入综合考量,构建相应混合整数非线性规划(mixed integer nonlinear programming,MINLP)模型。设计相应多目标优化求解算法,运用理想点法对目标函数进行转化,将多目标优化问题转化为单目标优化问题。结合相应算例集,运用LINGO 17.0全局求解程序求得每组算例的全局最优解。结果表明,针对带软时间窗的同时取送货车辆路径问题(vehicle routing problem with simultaneous pick-up and delivery and soft time windows,VRPSPDSTW),所建模型及算法是有效且可行的。
文摘带柔性时间窗的开放式车辆路径问题(Opening Vehicle Routing Problem with Flexible Time Windows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logistic映射引入基本蚁群算法,构建了三种混沌蚁群算法,并将其用于求解OVRPFTW.算例测试表明:Sine映射和Chebyshev映射能够明显地改进基本蚁群算法的优化性能,基于Sine映射和Chebyshev映射的混沌蚁群算法的求解性能优于基本蚁群算法和基于Logistic映射的混沌蚁群算法.