期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进型多维卷积神经网络的微动手势识别方法 被引量:7
1
作者 李玲霞 王羽 +1 位作者 吴金君 王沙沙 《计算机工程》 CAS CSCD 北大核心 2018年第9期243-249,共7页
传统二维卷积神经网络因遗漏时间维度信息导致不能识别微动手势。为此,提出一种基于视频流的微动手势识别方法。对输入视频流进行简单预处理,利用改进型多维卷积神经网络提取手势的时空特征,融合多传感器信息并通过支持向量机实现微动... 传统二维卷积神经网络因遗漏时间维度信息导致不能识别微动手势。为此,提出一种基于视频流的微动手势识别方法。对输入视频流进行简单预处理,利用改进型多维卷积神经网络提取手势的时空特征,融合多传感器信息并通过支持向量机实现微动手势识别。实验结果表明,该方法对手势的背景和光照都具有较好的鲁棒性,且针对各类动态手势数据集能达到87%以上的识别准确率。 展开更多
关键词 计算机视觉 手势识别 卷积神经网络 多维卷积神经网络 支持向量机 鲁棒性
在线阅读 下载PDF
基于改进谱峭度图与多维融合CNN的轴承故障诊断方法 被引量:3
2
作者 楼伟 陈曦晖 赵伟恒 《电子测量技术》 北大核心 2023年第5期185-191,共7页
针对轴承振动信号中存在与故障特征相关性较低成分的干扰导致故障诊断准确率降低的问题,提出了一种基于改进谱峭度图与多维融合CNN的轴承故障诊断方法。首先,为提高振动信号与故障特征的相关性,减少干扰成分,以双树复小波包变换为基础... 针对轴承振动信号中存在与故障特征相关性较低成分的干扰导致故障诊断准确率降低的问题,提出了一种基于改进谱峭度图与多维融合CNN的轴承故障诊断方法。首先,为提高振动信号与故障特征的相关性,减少干扰成分,以双树复小波包变换为基础构建改进谱峭度图模型,增强多分辨率差异性故障特征表达。然后,考虑丰富特征评价维度,构建多维融合CNN模型,将原始信号与改进谱峭度图共同作为多维特征输入实现故障精准诊断。实验结果表明,该方法能够提取各类轴承振动信号中具备差异性的故障特征,在多工况下均能够准确识别轴承故障,具有较好的诊断精度。 展开更多
关键词 故障诊断 集合经验模态分解 改进谱峭度图 双树复小波包变换 多维融合卷积神经网络
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
3
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部