期刊文献+
共找到854篇文章
< 1 2 43 >
每页显示 20 50 100
基于鲸鱼优化算法-支持向量机判别模型的风化基岩富水性评价:以神府煤田张家峁煤矿为例
1
作者 侯恩科 吴家镁 +1 位作者 杨帆 张池 《科学技术与工程》 北大核心 2025年第1期119-127,共9页
为实现风化基岩含水层富水性的准确预测,以张家峁井田内的28组风化基岩抽水试验钻孔数据作为训练及验证样本,选取风化基岩的岩性组合指数、风化指数、厚度、岩芯采取率、埋深作为评价指标,提出基于鲸鱼优化算法-支持向量机(whale optimi... 为实现风化基岩含水层富水性的准确预测,以张家峁井田内的28组风化基岩抽水试验钻孔数据作为训练及验证样本,选取风化基岩的岩性组合指数、风化指数、厚度、岩芯采取率、埋深作为评价指标,提出基于鲸鱼优化算法-支持向量机(whale optimization algorithm-support vector machines,WOA-SVM)的风化基岩含水层富水性判别模型。该模型可对无抽水试验资料区域的风化基岩的富水性级别进行预测,综合利用井田内249组勘探钻孔的地质信息,实现井田的风化基岩富水性分区。研究表明,张家峁井田风化基岩整体富水性较弱,且空间分布不均;井田中部和乌兰不拉沟沿线的局部地区存在强富水性区域,但其分布范围较小,中西部和东南部有部分中等富水性区域,东北部及西南部区域几乎全为弱和极弱富水性。该方法预测的结果与实际较为吻合,研究成果可为矿井安全生产提供参考,也为风化基岩富水性预测提供了一种新思路。 展开更多
关键词 风化基岩 支持向量(svm) 鲸鱼优化(WOA) 富水性分区
在线阅读 下载PDF
支持向量机驱动下的智能化工程地质分区探索
2
作者 赵福权 孙斌堂 王秀丽 《地质与勘探》 北大核心 2025年第3期536-544,共9页
针对传统工程地质分区存在的数据获取困难、分类过程复杂及效率不足等问题,本研究提出了一种基于支持向量机(SVM)技术的智能化分区方法,并以河南省洛宁县吉家洼金矿为例进行验证。该金矿区工程地质条件复杂,主要岩性为黑云斜长片麻岩和... 针对传统工程地质分区存在的数据获取困难、分类过程复杂及效率不足等问题,本研究提出了一种基于支持向量机(SVM)技术的智能化分区方法,并以河南省洛宁县吉家洼金矿为例进行验证。该金矿区工程地质条件复杂,主要岩性为黑云斜长片麻岩和角闪斜长片麻岩,局部发育工程地质条件较差的辉绿岩脉,南北向断裂贯穿矿区,节理裂隙较为发育且分布不均。基于监督学习框架,本研究首先构建了工程地质特征数据集,利用700 m中段以上已揭露区域的已知分区数据训练SVM模型,进而对700 m中段以下未开采区域进行分区预测。研究表明,SVM通过高斯核函数将非线性地质特征映射至高维空间,有效实现了复杂地质数据的线性可分。在最优参数条件下,模型在训练集和测试集上的分类准确率分别达到99.72%和99.82%,证明了该方法在复杂地质条件下的可靠性和准确性。本研究的创新性体现在:(1)建立了基于SVM的工程地质智能分区方法;(2)验证了该方法在数据有限条件下的适用性;(3)为复杂地质环境下的矿山开采提供了科学依据。该研究成果不仅可直接指导吉家洼金矿的安全生产,也为类似矿区的智能化地质评价提供了可推广的技术方案。 展开更多
关键词 支持向量(svm) 智能化 工程地质分区 监督学习 吉家洼金矿 河南省
在线阅读 下载PDF
基于多级支持向量机分类器的电力变压器故障识别 被引量:57
3
作者 吕干云 程浩忠 +1 位作者 董立新 翟海保 《电力系统及其自动化学报》 CSCD 北大核心 2005年第1期19-22,52,共5页
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法 ,较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程 ,对色谱分析法检测到... 支持向量机是以统计学习理论为基础发展起来的新的通用学习方法 ,较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程 ,对色谱分析法检测到的特征气体含量进行数值预处理 ,提取出故障识别所需要的 6个特征量 ,然后利用数值预处理后得到的数据样本分别对三级支持向量机进行训练和识别 ,并最后判断输出变压器所处的状态。测试结果表明 ,该方法具有三个优点 :1 )具有较强的鲁棒性 ,识别正确率极高 ;2 )训练时间很短 ,实时性能好 ;3 )不存在局部极小问题。 展开更多
关键词 故障识别 多级支持向量 分类器 电力变压器
在线阅读 下载PDF
支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究 被引量:47
4
作者 张录达 苏时光 +2 位作者 王来生 李军会 杨丽明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2005年第1期33-35,共3页
支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大... 支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大黄样品真伪识别模型。对学习集中33个样品模型识别准确率为100%;对70个预测样品的识别准确率为9677%,为中药大黄的快速识别提供了参考。研究结果表明了SVM近红外光谱法建立生物样品识别模型的可行性。通过旨在介绍SVM学习方法的基本思想,以引起化学计量学工作者的进一步关注。 展开更多
关键词 大黄 中药 年轻 研究结果 准确率 样品 近红外光谱法 支持向量(svm) 统计学习理论 识别
在线阅读 下载PDF
基于LCD-Hilbert谱奇异值和多级支持向量机的配电网故障识别方法 被引量:36
5
作者 郭谋发 游林旭 +2 位作者 洪翠 高伟 王锐凤 《高电压技术》 EI CAS CSCD 北大核心 2017年第4期1239-1247,共9页
准确识别故障类型是配电网故障处理的首要任务。提出了一种基于时频矩阵奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障识别方法。利用局部特征尺度分解法(LCD)、Hilbert变换以及带通滤波算法,构造配电网母线电压、主变低压侧进线... 准确识别故障类型是配电网故障处理的首要任务。提出了一种基于时频矩阵奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障识别方法。利用局部特征尺度分解法(LCD)、Hilbert变换以及带通滤波算法,构造配电网母线电压、主变低压侧进线电流等波形的时频矩阵,对其进行奇异值分解以获取波形奇异谱,提取相应奇异谱的分布参数(如反映奇异值大小的奇异谱均值、反映信号复杂程度的奇异熵等)作为特征向量。将特征向量输入基于多级SVM的分类器以实现故障识别。各类典型工况下的仿真和实验结果表明该识别方法的正确率均>90%,可实现对各类不同故障的有效辨识,且具有很强的适应性和实用性。 展开更多
关键词 配电网故障 时频矩阵 奇异值分解 局部特征尺度分解 带通滤波 多级支持向量
在线阅读 下载PDF
采用时频矩阵奇异值分解和多级支持向量机的雷电及操作过电压识别 被引量:28
6
作者 杨勇 李立浧 +3 位作者 杜林 李欣 司马文霞 戴斌 《电网技术》 EI CSCD 北大核心 2012年第8期31-37,共7页
雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电... 雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电压信号的小波分解,构建多尺度时频矩阵,利用SVD对该矩阵进行奇异值分解,将信号分解到不同的时频特征子空间,然后获取过电压信号的奇异谱,并计算奇异谱的特征量,将这些特征量作为多级SVM的输入,实现雷电及操作过电压的辨识。对变电站实测5种过电压信号的计算表明:提取的特征量维数低,对过电压信号的电磁干扰具有相对稳定性;采用的识别方法训练次数少,识别率高,能够实现雷电及操作过电压的准确分类。 展开更多
关键词 雷电过电压 操作过电压 特征提取 奇异值分解 过电压识别 多级支持向量
在线阅读 下载PDF
基于邻域粗糙集与多核支持向量机的变压器多级故障诊断 被引量:51
7
作者 李春茂 周妺末 +2 位作者 刘亚婕 高波 吴广宁 《高电压技术》 EI CAS CSCD 北大核心 2018年第11期3474-3482,共9页
针对传统变压器故障诊断过程中故障征兆与故障类型间映射关系的不确定性及模糊性问题,根据粗糙集知识与多核学习理论,构建了一种变压器多级故障诊断模型。该方法基于溶解气体分析(DGA)诊断标准,以5种特征气体及16种气体比值作为初始... 针对传统变压器故障诊断过程中故障征兆与故障类型间映射关系的不确定性及模糊性问题,根据粗糙集知识与多核学习理论,构建了一种变压器多级故障诊断模型。该方法基于溶解气体分析(DGA)诊断标准,以5种特征气体及16种气体比值作为初始特征量,并利用邻域粗糙集知识按属性重要度大小获取在所诊断故障类型上高重要度的最小故障特征信息集。在深入挖掘DGA所含故障信息的基础上,建立分级故障诊断模型,以二分类支持向量机作为分类器,利用最小故障特征信息集进行多级故障诊断。此外,采用反正切变换处理各输入特征,避免了油中溶解气体长尾分布而导致的误分情况;同时,各支持向量机皆采用多核学习,以解决单核支持向量机数据敏感性强,鲁棒性低的缺陷。实例分析表明:与传统特征量相比,新提出特征量下的各诊断层准确率均能较稳定的达到88%以上,且最小运行时长可达0.337 5 s,具备提高分类精度,减小运行时间与算法结构的明显优势。另外,与传统故障诊断方法相比,该多级诊断的模型不仅能更深层次挖掘故障特征信息,降低冗余特征信息的复杂性,并且可有效提高诊断平均准确率3%以上,具有更高的准确度与可靠性。 展开更多
关键词 变压器 反正切变换 邻域粗糙集 特征重要度 多核支持向量 多级故障诊断
在线阅读 下载PDF
基于支持向量机(SVM)的回采工作面瓦斯涌出混沌预测方法研究 被引量:14
8
作者 何利文 施式亮 +1 位作者 宋译 刘影 《中国安全科学学报》 CAS CSCD 北大核心 2009年第9期42-46,共5页
针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024... 针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024回采工作面瓦斯涌出时间序列仿真计算,仿真结果显示该预测模型具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度。同时,该模型具有以往传统机器学习的瓦斯涌出预测模型建立简便、训练速度快等优点。由于充分考虑瓦斯涌出时间序列的混沌性,并利用SVM预测的优良特性,使得预测更科学。 展开更多
关键词 支持向量(svm) 瓦斯涌出 混沌 相空间重构 时间序列
在线阅读 下载PDF
基于模糊支持向量机的多级二叉树分类器的水轮机调速系统故障诊断 被引量:36
9
作者 张国云 章兢 《中国电机工程学报》 EI CSCD 北大核心 2005年第8期100-104,共5页
在传统支持向量机(C-SVM)的基础上,通过集成模糊聚类技术和支持向量机算法,构造了一种适合于故障诊断的多级二叉树分类器,并首次应用于水轮机调速系统故障诊断,取得了良好效果。该方法首先利用模糊聚类技术求取每类样本聚类中心,再对各... 在传统支持向量机(C-SVM)的基础上,通过集成模糊聚类技术和支持向量机算法,构造了一种适合于故障诊断的多级二叉树分类器,并首次应用于水轮机调速系统故障诊断,取得了良好效果。该方法首先利用模糊聚类技术求取每类样本聚类中心,再对各聚类中心逐次二分,从而确定了一棵二叉树,然后在二叉树的每个节点处,根据样本聚类中心把相应样本分成两类,构造出SVM 子分类器。实验结果表明,对于k 类别故障诊断问题,只需构造k-1 个SVM 子分类器,简化了分类器结构,避免了不可区分区域的出现,且节省了内存开销,故障诊断正确率高。 展开更多
关键词 系统故障诊断 树分类器 模糊支持向量 水轮 调速 多级 支持向量算法 聚类中心 聚类技术 诊断问题 二叉树 svm 构造 样本 k-1 分区域 正确率 二分 内存
在线阅读 下载PDF
电力系统暂时过电压多级支持向量机分层识别 被引量:19
10
作者 杜林 李欣 +1 位作者 王丽蓉 司马文霞 《电力系统保护与控制》 EI CSCD 北大核心 2012年第4期26-31,36,共7页
提出了一种电力系统暂时过电压多级支持向量机(M-SVM)分层识别的方法。根据暂时过电压分类,建立暂时过电压分层识别系统,并采用'二分树'法构建多级支持向量机分类器。在变电站实测过电压数据的基础上,提取了三相及零序电压的时... 提出了一种电力系统暂时过电压多级支持向量机(M-SVM)分层识别的方法。根据暂时过电压分类,建立暂时过电压分层识别系统,并采用'二分树'法构建多级支持向量机分类器。在变电站实测过电压数据的基础上,提取了三相及零序电压的时域统计特征和小波时频特征,同时对特征量进行逐级选择,将这些特征量作为M-SVM的输入,实现暂时过电压类型辨识。现场数据测试表明,采用的M-SVM分层识别方法具有训练样本少、训练时间短、识别率高的优点,可较好地应用于电力系统暂时过电压类型识别。 展开更多
关键词 暂时过电压 特征提取 过电压识别 零序电压 分层识别系统 多级支持向量
在线阅读 下载PDF
煤与瓦斯突出预测的支持向量机(SVM)模型 被引量:36
11
作者 师旭超 韩阳 《中国安全科学学报》 CAS CSCD 北大核心 2009年第7期26-30,共5页
基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分... 基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分为无突出、小型突出、中型突出和大型突出4个等级,进而使其评判结果更为细化。以实测数据作为学习样本进行训练,建立相应判别函数对待判样本进行预测。通过算例分析,表明该模型的方法对煤与瓦斯突出预测的合理性与有效性,可以在实际工程中推广。 展开更多
关键词 煤与瓦斯突出 支持向量(svm) 预测 方法
在线阅读 下载PDF
基于多级聚类分析和支持向量机的空间负荷预测方法 被引量:62
12
作者 肖白 聂鹏 +2 位作者 穆钢 王吉 田莉 《电力系统自动化》 EI CSCD 北大核心 2015年第12期56-61,共6页
为充分利用元胞负荷与元胞属性之间的相关联系来改善空间负荷预测效果,提出了基于多级聚类分析和支持向量机的空间负荷预测方法。首先生成元胞并建立元胞属性集合,根据各属性对元胞进行多级聚类分析,其中采用改进的k-均值算法确定聚类... 为充分利用元胞负荷与元胞属性之间的相关联系来改善空间负荷预测效果,提出了基于多级聚类分析和支持向量机的空间负荷预测方法。首先生成元胞并建立元胞属性集合,根据各属性对元胞进行多级聚类分析,其中采用改进的k-均值算法确定聚类数目和初始聚类中心,来得到逐级细化的元胞分类;然后针对不同类型的元胞建立各自的支持向量机预测模型,同时利用遗传算法进行参数优化以提高预测模型的适应度;最后将待预测元胞的相关属性作为输入向量并代入所建立的预测模型中计算出目标年各元胞负荷最大值,从而实现空间负荷预测。工程实例分析表明了该方法的实用性和有效性。 展开更多
关键词 空间负荷预测 多级聚类分析 支持向量 遗传算法 元胞负荷
在线阅读 下载PDF
支持向量机(SVM)方法在降水分类预测中的应用 被引量:21
13
作者 杨淑群 芮景析 冯汉中 《西南农业大学学报(自然科学版)》 CSCD 北大核心 2006年第2期252-257,共6页
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建... 支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用。 展开更多
关键词 支持向量(svm) 推理模型 降水 分类预测
在线阅读 下载PDF
基于支持向量机(SVM)的民用飞机重着陆智能诊断研究 被引量:19
14
作者 聂磊 黄圣国 +1 位作者 舒平 王旭辉 《中国安全科学学报》 CAS CSCD 北大核心 2009年第7期149-153,共5页
针对国内航空公司对于重着陆的判断方法存在的不足,提出采用支持向量机(SVM)建立重着陆的智能诊断模型;分析对重着陆产生影响的相关因素,在力学基础上揭示了重着陆的产生原理;利用快速存取记录器中记录的多个飞行参数的信息,采用B737机... 针对国内航空公司对于重着陆的判断方法存在的不足,提出采用支持向量机(SVM)建立重着陆的智能诊断模型;分析对重着陆产生影响的相关因素,在力学基础上揭示了重着陆的产生原理;利用快速存取记录器中记录的多个飞行参数的信息,采用B737机型的实际样本数据进行训练和验证。结果表明:该方法能有效判断出是否发生重着陆,其准确率高达92.86%,证明该重着陆智能诊断方法具有较强实际应用价值,为后续研究奠定了基础。 展开更多
关键词 重着陆 飞行品质监控 智能诊断模型 支持向量(svm) 核函数
在线阅读 下载PDF
基于支持向量机(SVM)的数字音频水印 被引量:12
15
作者 王剑 林福宗 《计算机研究与发展》 EI CSCD 北大核心 2005年第9期1605-1611,共7页
提出了一种新的基于支持向量机(supportvectormachine,SVM)的数字音频水印算法.主要思想是在宿主音频中嵌入一段模板信息,定义模板信息与宿主音频之间的一种对应关系,将水印的检测问题转化为一个可用SVM处理的二分类问题,利用SVM对先验... 提出了一种新的基于支持向量机(supportvectormachine,SVM)的数字音频水印算法.主要思想是在宿主音频中嵌入一段模板信息,定义模板信息与宿主音频之间的一种对应关系,将水印的检测问题转化为一个可用SVM处理的二分类问题,利用SVM对先验知识(对应关系)的学习,以达到对未知数字音频水印的正确分类检测.仿真实验结果表明,该数字音频水印具有较强的健壮性和不可感知性,在受到MP3压缩、低通滤波、重采样量化、噪声干扰等常用信号处理方法的处理后,能正确检测出水印,同时在水印检测时不需要原始音频,实现了水印的盲检测. 展开更多
关键词 数字音频 音频水印 支持向量(svm) 器学习 小波变换
在线阅读 下载PDF
SOFC的支持向量机(SVM)辨识建模 被引量:7
16
作者 霍海娥 霍海波 杨长生 《系统仿真学报》 CAS CSCD 北大核心 2010年第6期1557-1560,共4页
为了便于固体氧化物燃料电池(SOFC)的性能预测和控制方案设计,提出一种基于支持向量机(SVM)的建模方法,用具有RBF核函数的SVM建立了SOFC电池堆的非线性模型。应用仿真对所建SVM模型的有效性和精度进行了检验,并与BPNN模型的辨识效果进... 为了便于固体氧化物燃料电池(SOFC)的性能预测和控制方案设计,提出一种基于支持向量机(SVM)的建模方法,用具有RBF核函数的SVM建立了SOFC电池堆的非线性模型。应用仿真对所建SVM模型的有效性和精度进行了检验,并与BPNN模型的辨识效果进行了比较。仿真结果证明与BPNN模型相比,SVM模型具有较高的建模精度。该SVM辨识模型的建立,对SOFC系统的控制策略研究具有一定的实用价值。 展开更多
关键词 固体氧化物燃料电池(SOFC) 支持向量(svm) BP神经网络(BPNN) 建模
在线阅读 下载PDF
基于改进S变换和复合特征量的多级支持向量机的电能质量扰动分类 被引量:13
17
作者 郭俊文 李开成 《电测与仪表》 北大核心 2014年第8期19-25,共7页
提出一种多级支持向量机对电能质量扰动事件分类的方法,该方法基于改进S变换和多级支持向量机。改进S变换首先通过傅里叶变换提取信号的主要频率成分,然后根据提取的主要频率成分设定相应的调节因子λ,使其在低频段有较高的时间分辨率,... 提出一种多级支持向量机对电能质量扰动事件分类的方法,该方法基于改进S变换和多级支持向量机。改进S变换首先通过傅里叶变换提取信号的主要频率成分,然后根据提取的主要频率成分设定相应的调节因子λ,使其在低频段有较高的时间分辨率,在高频段有较高的频率分辨率,从而增强了S变换的特征量提取能力。之后对各类信号的特征参数进行优化处理,产生复合特征量,最后在此基础上将复合特征量设置为支持向量,生成一个多级支持向量机分类器,从而实现多种电能质量扰动信号的识别。采用"二分树"分类的多级支持向量机支持向量较少,且容易实现。仿真测试结果验证了该方法相对于传统的基于S变换和支持向量机分类方法有较强的分辨率和抗噪能力。 展开更多
关键词 电能质量扰动 改进S变换 多级支持向量
在线阅读 下载PDF
基于SVDD和SVM的高压调门油动机状态监测系统研究
18
作者 马立强 姜安琦 +2 位作者 姜万录 郑云飞 吴凤和 《振动与冲击》 北大核心 2025年第12期238-248,共11页
在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SV... 在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SVDD)异常检测和支持向量机(support vector machine,SVM)故障诊断的高压调门油动机状态监测系统。首先,从原始数据中提取时域(time domain,T)、频域(frequency domain,F)和时频域小波包子带能量(wavelet packet subband energy,W)特征,并通过特征融合及归一化的方式形成新的多维融合特征向量TFW。随后,采用卷积神经网络(convolutional neural network,CNN)对TFW进行深层次挖掘,生成更具表现力的特征TFWCNN,以此作为SVDD和SVM模型的输入。搭建了高压调门油动机故障模拟试验台,用以采集数据并验证该方法的有效性。研究结果表明:在三个具有不同阀位开度的高压调门油动机动态数据集上,SVDD异常检测的F1分数分别达到0.9991、0.9978和0.9760;SVM故障诊断的F1分数分别为0.9988、0.9950和0.9867;不仅说明该方法在高压调门油动机的状态监测中表现出的优异性能,同时也说明深度TFWCNN特征在高压调门油动机状态监测中的有效性和准确性;还为类似的汽轮机状态监测诊断系统提供了一种有效的技术方案。 展开更多
关键词 高压调门油动 支持向量数据描述(SVDD)异常检测 支持向量(svm)故障诊断 状态监测系统
在线阅读 下载PDF
基于支持向量机(SVM)的股市预测方法 被引量:7
19
作者 施燕杰 《统计与决策》 CSSCI 北大核心 2005年第02X期123-125,共3页
本文对先有预测工具比较分析的基础上,提出了基于支持向量机的股市预测方法,并建立了数学模型对新疆众和进行了实证研究。结果表明,支持向量机比神经网络有更好的学习和泛化能力,在股市预测中取得了较好的效果。
关键词 股市预测 实证研究 比较分析 新疆 学习 工具 基础 支持向量(svm) 泛化能力 神经网络
在线阅读 下载PDF
基于支持向量机(SVMs)的人类核心启动子的识别 被引量:2
20
作者 徐文韬 叶子弘 俞晓平 《安徽农学通报》 2006年第13期64-66,76,共4页
本文采用基于支持向量机(SVM s)的方法预测了4类含有核心启动子元件的启动子和含有CCAAT-box的启动子。4类核心启动子元件分别是DPE,BRE,TATA-box和Inr。特征提取采用基于位点权重矩阵(PWM s)的程序Promoter C lassifier进行。本文预测... 本文采用基于支持向量机(SVM s)的方法预测了4类含有核心启动子元件的启动子和含有CCAAT-box的启动子。4类核心启动子元件分别是DPE,BRE,TATA-box和Inr。特征提取采用基于位点权重矩阵(PWM s)的程序Promoter C lassifier进行。本文预测结果的敏感度,确定度,以及相关系数均高于三种启动子预测方法(PromoterInspec-tor(PI),Promoter 2.0 Pred iction(PP)和Neural Network Promoter Pred iction(NNPP),使敏感度和确定度同时高于0.84,其中TATA-box预测结果可使敏感度和确定度同时高于0.95。 展开更多
关键词 人类核心启动子 支持向量(svms) 位点权重矩阵(PWMs) 预测 识别
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部