期刊文献+

煤与瓦斯突出预测的支持向量机(SVM)模型 被引量:36

Prediction Model for the Outburst of Coal and Gas Based on SVM
在线阅读 下载PDF
导出
摘要 基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分为无突出、小型突出、中型突出和大型突出4个等级,进而使其评判结果更为细化。以实测数据作为学习样本进行训练,建立相应判别函数对待判样本进行预测。通过算例分析,表明该模型的方法对煤与瓦斯突出预测的合理性与有效性,可以在实际工程中推广。 Based on the classification algorithm of support vector machine (SVM) , model is established according to main factors with important influence on outburst of coal and gas, The factors such as mining depth, gas pressure, liberation initial velocity of gas, firmness coefficient of coal, geological destructivehess are selected as the inputs of the model; the outburst grades are classified as the non-outburst, slight outburst, medium outburst and serious outburst in the evaluating model; so the evaluation results can be more precise. The discrimination functions are obtained through training a large of samples on outburst of coal and gas. The theoretical model is successfully applied to evaluating outburst of coal and gas in practical engineering; and the rationality and effectiveness of this method is demonstrated through examples.
作者 师旭超 韩阳
出处 《中国安全科学学报》 CAS CSCD 北大核心 2009年第7期26-30,共5页 China Safety Science Journal
基金 国家自然科学基金资助(50678060)
关键词 煤与瓦斯突出 支持向量机(SVM) 预测 方法 outburst of coal and gas support vector machine (SVM) prediction method
作者简介 副教授 教授
  • 相关文献

参考文献10

二级参考文献20

  • 1蒋承林.[D].徐州:中国矿业大学,1995.
  • 2[1]VERIKAS A,BACAUSKIENE M.Feature Selection with Neural Networks[J].Pattern Recognition Letters,2002,23:1 323-1 335.
  • 3[2]QUESTIER F,PUT R,COOMANS D,et al.The Use of CART and Multivariate Regression Trees for Supervised and Unsupervised Feature Selection[J].Chemometrics and Intelligent Laboratory Systems,2005,(76):45-54.
  • 4[3]FRANCESCO MARCELLONI.Feature Selection Based on a Modified Fuzzy C-means Algorithm with Supervision[J].Information Sciences,2003,151:201-226.
  • 5[7]SERGIOS THEODORIDIS,KONSTANTINOS KOUTROUMBAS.Pattern Recognition (Second Edition)[M].Beijing:China Machine Press,2003.
  • 6[8]CASIMIR R,BOUTLEUX E,CLERC G,et al.The Use of Features Selection and Nearest Neighbors Rule for Faults Diagnostic in Induction Motors[J].Engineering Applications of Artificial Intelligence,2006,(19):169-177.
  • 7[2]Shepherd J,RixmLK,Griffiths L Outbutsts and Ceotngical Structure in Coal Mines:A Review[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1981,18(4):267-283.
  • 8[3]CAO Ytm-xing,HE Ding-dong,David C Click.Coal and Gas Outbursts in Footwalla of Reverse Faults[J].International Journal of Coal Geology.2001,48(2):47-63.
  • 9王学萌 罗建军.灰色系统方法简明教程[M].成都:成都科技大学出版社,1992..
  • 10边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..

共引文献264

同被引文献522

引证文献36

二级引证文献430

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部