期刊文献+
共找到763篇文章
< 1 2 39 >
每页显示 20 50 100
基于注意力循环神经网络的联合深度推荐模型 被引量:1
1
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于深度神经网络的风力机疲劳载荷代理模型研究 被引量:1
2
作者 黄国庆 刘伟杰 +3 位作者 王彬滨 彭留留 杨庆山 谭舒 《太阳能学报》 北大核心 2025年第4期398-405,共8页
提出一种基于深度神经网络的风力机疲劳载荷代理模型,旨在解决风力机场址评估效率低下的问题。开展基于深度神经网络(DNN)的风力机疲劳载荷代理模型研究。首先,根据平均风速、湍流强度、风切变、偏航误差、入流角和空气密度6维环境变量... 提出一种基于深度神经网络的风力机疲劳载荷代理模型,旨在解决风力机场址评估效率低下的问题。开展基于深度神经网络(DNN)的风力机疲劳载荷代理模型研究。首先,根据平均风速、湍流强度、风切变、偏航误差、入流角和空气密度6维环境变量的分布和相关性进行准蒙特卡洛抽样,获得10000个环境变量样本。然后,采用TurbSim和OpenFAST对NREL 5 MW参考风力机进行仿真得到载荷时程,并通过MLife计算得到1 Hz的等效疲劳载荷(DEL)数据库。最后,运用DNN方法建立DEL的代理模型并对模型精度进行详细验证。结果表明:基于DNN的DEL代理模型具有较高的预测精度,计算效率得到显著提升。 展开更多
关键词 风力机 疲劳载荷 OpenFAST 深度神经网络 代理模型
在线阅读 下载PDF
有限元模型修正中的贝叶斯深度神经网络构架优化设计 被引量:1
3
作者 何宇轩 尹涛 王曦 《振动与冲击》 北大核心 2025年第6期184-190,共7页
贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相... 贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相比于单隐含层在复杂高维数据拟合上通常具有更强的泛化能力,但针对多隐含层BNN构架优化设计问题的研究目前尚未见报道。该研究旨在针对多隐含层BNN并结合有限元模型修正问题开展构架优化设计研究,发展基于证据对数的多隐含层BNN网络性能定量量度,并提出一种实现多隐含层BNN各隐含层神经元数量同步优化的高效算法,获得针对具体模型修正问题的多隐含层BNN构架优化设计方案。通过基于现场实测模态参数的某大跨度钢结构人行桥模型修正验证了所提出方法的正确性和有效性。 展开更多
关键词 结构系统识别 结构健康监测 有限元模型修正 贝叶斯深度神经网络 构架优化设计
在线阅读 下载PDF
基于深度神经网络的竖向地震动加速度反应谱预测模型
4
作者 高铭宇 公茂盛 +3 位作者 左占宣 贾佳 刘博 王晓敏 《世界地震工程》 北大核心 2025年第4期106-117,共12页
竖向地震动对工程结构地震响应有重要影响,发展可靠的竖向地震动预测模型是地震工程领域的一项重要课题。传统的地震动预测主要基于实际强震动记录,采用最小二乘回归方式得到地震动参数预测模型,但是传统最小二乘回归通常假设变量之间... 竖向地震动对工程结构地震响应有重要影响,发展可靠的竖向地震动预测模型是地震工程领域的一项重要课题。传统的地震动预测主要基于实际强震动记录,采用最小二乘回归方式得到地震动参数预测模型,但是传统最小二乘回归通常假设变量之间是线性关系或预设的函数形式,这可能无法完全捕捉地震数据中复杂的非线性关系,而深度学习模型能够从数据中学习规律并对复杂的数据分布提供更高的预测精度。因此通过深度学习方法,基于NGA-West2数据库选取了9 953条竖向地震动记录,然后计算反应谱并进行模型训练与预测,建立了Self-DNN竖向地震动反应谱预测模型,并与传统预测模型以及DNN神经网络模型进行了对比。结果表明,本文基于深度学习算法建立的竖向地震动反应谱预测模型具有较好的可靠性和准确性,可以取得良好的预测效果。研究结果可以为竖向地震动反应谱预测和结构抗震设计等工作提供参考。 展开更多
关键词 竖向地震动 地震动反应谱 神经网络 深度学习 预测模型
在线阅读 下载PDF
基于深度神经网络的布鲁氏菌病风险预测模型的构建和验证
5
作者 刘思远 宋彪 +5 位作者 刘桂枝 王君 薛兰 苏杰 王宏利 沈欣 《中山大学学报(医学科学版)》 北大核心 2025年第4期700-707,共8页
【目的】采用深度神经网络算法构建布鲁氏菌病预测模型,提升布鲁氏菌病的早期发现效能。【方法】纳入2023年呼市职业病防治院收治的202例布鲁氏菌病患者与319例非布鲁氏菌病患者的临床资料,从中提取性别、年龄、血常规指标及临床诊断等... 【目的】采用深度神经网络算法构建布鲁氏菌病预测模型,提升布鲁氏菌病的早期发现效能。【方法】纳入2023年呼市职业病防治院收治的202例布鲁氏菌病患者与319例非布鲁氏菌病患者的临床资料,从中提取性别、年龄、血常规指标及临床诊断等数据进行分析。通过深度神经网络算法构建布鲁氏菌病预测模型,并通过十折交叉验证进行模型优化。模型性能评估指标包括灵敏度、假阴性率、特异度、假阳性率、准确率、阳性预测值、阴性预测值、F1分数、受试者工作特征曲线下面积(AUC)。经评估筛选出的最优模型,借助沙普利可加性解释(SHAP)方法进行解释,明确模型的决策逻辑与各特征的影响机制。【结果】数据可视化分析显示,布病组与非布病组数据差异不明显。经十折交叉验证筛选出最优模型展现出良好性能,灵敏度为85.3%、特异度为92.1%、准确率为89.5%、AUC为96.6%,95%CI(0.937,0.977)。SHAP方法解释模型发现年龄、血小板计数、血小板平均体积、嗜碱性粒细胞比例、红细胞分布宽度和绝对嗜碱细胞数,对布病发生具有显著影响。【结论】本研究构建的深度神经网络预测模型性能良好,能为布病早期诊断与防控提供可靠支持。同时,明确布病相关显著影响特征有助于进一步认识疾病发病机制,该模型未来有望在临床广泛推广。 展开更多
关键词 布鲁氏菌病 深度神经网络 血常规指标 沙普利可加性解释方法 风险预测模型
在线阅读 下载PDF
基于深度神经网络的超声速民机机翼结构设计
6
作者 牛芳淦 马文圆 +2 位作者 杨超 王宇 尹海莲 《机械强度》 北大核心 2025年第4期122-130,共9页
目前对超声速民机机翼的研究主要侧重于低声爆设计技术和超声速减阻技术,针对机翼结构设计的研究相对较少。因此,提出了一种面向超声速民机初步设计阶段机翼结构设计的多级优化方法,包括机翼结构布局参数化建模、结构尺寸优化有限元模... 目前对超声速民机机翼的研究主要侧重于低声爆设计技术和超声速减阻技术,针对机翼结构设计的研究相对较少。因此,提出了一种面向超声速民机初步设计阶段机翼结构设计的多级优化方法,包括机翼结构布局参数化建模、结构尺寸优化有限元模型的自动生成、深度神经网络代理模型的搭建与训练,以及基于深度神经网络代理模型进行优化求解。分析结果表明,提出的优化策略能够对超声速民机机翼结构进行良好的快速设计,深度神经网络模型相比于传统代理模型具有更高的预测精度,提高了机翼结构初步设计的效率。 展开更多
关键词 超声速民机 参数化 深度神经网络 代理模型 结构设计
在线阅读 下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
7
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
在线阅读 下载PDF
考虑层敏感性的卷积神经网络混合精度量化方法
8
作者 刘海军 张晨曦 +3 位作者 王析羽 陈长林 陈军 李智炜 《国防科技大学学报》 北大核心 2025年第4期143-150,共8页
针对如何将神经网络保真映射到资源受限的嵌入式设备这一问题,提出基于层敏感性分析的卷积神经网络混合精度量化方法。通过计算Hessian矩阵平均迹衡量卷积层参数的敏感性,为位宽分配提供依据;使用逐层升降方法进行位宽分配,最终完成网... 针对如何将神经网络保真映射到资源受限的嵌入式设备这一问题,提出基于层敏感性分析的卷积神经网络混合精度量化方法。通过计算Hessian矩阵平均迹衡量卷积层参数的敏感性,为位宽分配提供依据;使用逐层升降方法进行位宽分配,最终完成网络模型的混合精度量化。实验结果表明,与DoReFa和LSQ+两种固定精度量化方法相比,所提出的混合精度量化方法在平均位宽为3 bit的情况下将识别准确率提高了10.2%和1.7%;与其他混合精度量化方法相比,所提方法识别准确率提高了1%以上。此外,加噪训练能够有效提高混合精度量化方法的鲁棒性,在噪声标准差为0.5的情况下,将识别准确率提高了16%。 展开更多
关键词 卷积神经网络 模型量化 人工智能 混合精度
在线阅读 下载PDF
基于深度神经网络与状态预测器的无人飞行器自适应控制
9
作者 程喆坤 赵良玉 《固体火箭技术》 北大核心 2025年第5期799-806,共8页
集群飞行场景中广泛存在的非结构化不确定性会影响无人飞行器的控制品质,甚至导致其出现飞行安全问题。为了能够在存在非结构化不确定性的情况下实现良好的轨迹跟踪性能,提出了一种基于深度神经网络和状态预测器的自适应控制方法,利用... 集群飞行场景中广泛存在的非结构化不确定性会影响无人飞行器的控制品质,甚至导致其出现飞行安全问题。为了能够在存在非结构化不确定性的情况下实现良好的轨迹跟踪性能,提出了一种基于深度神经网络和状态预测器的自适应控制方法,利用深度神经网络的特征提取能力为非结构化不确定性设计特征向量,从而提高了控制系统的不确定性估计性能。基于非光滑Lyapunov稳定性理论推导出自适应律,保障了深度神经网络在控制系统中应用的稳定性。根据获得的估计值对不确定性进行补偿,实现了更好的轨迹跟踪和姿态控制效果。最后,数值仿真证明了所提出的方法提升了无人飞行器在非结构化不确定性影响下的轨迹跟踪精度,有效保障了无人飞行器集群飞行的稳定与安全。 展开更多
关键词 模型参考自适应控制 深度神经网络 状态预测器 非结构化不确定性
在线阅读 下载PDF
基于水印技术的深度神经网络模型知识产权保护
10
作者 金彪 林翔 +3 位作者 熊金波 尤玮婧 李璇 姚志强 《计算机研究与发展》 EI CSCD 北大核心 2024年第10期2587-2606,共20页
构造一个优秀的深度神经网络(deep neural network,DNN)模型需要大量的训练数据、高性能设备以及专家智慧.DNN模型理应被视为模型所有者的知识产权(intellectual property,IP).保护DNN模型的知识产权也体现了对作为构建和训练该模型的... 构造一个优秀的深度神经网络(deep neural network,DNN)模型需要大量的训练数据、高性能设备以及专家智慧.DNN模型理应被视为模型所有者的知识产权(intellectual property,IP).保护DNN模型的知识产权也体现了对作为构建和训练该模型的数据要素价值的珍视.然而,DNN模型容易受到恶意用户的盗取、篡改和非法传播等攻击,如何有效保护其知识产权已成为学术研究的前沿热点与产业亟需攻克的难题.不同于现有相关综述,聚焦DNN模型水印的应用场景,从用于模型版权声明的鲁棒模型水印和用于模型完整性验证的脆弱模型水印2个维度出发,着重评述基于水印技术的DNN模型知识产权保护方法,探讨不同方法的特点、优势及局限性.同时,详细阐述DNN模型水印技术的实际应用情况.最后,在提炼各类方法共性技术的基础上,展望DNN模型知识产权保护的未来研究方向. 展开更多
关键词 深度神经网络 知识产权 数据要素 鲁棒模型水印 脆弱模型水印
在线阅读 下载PDF
基于物理模型驱动的神经网络的OAM复值谱重建:数值模拟
11
作者 卢国栋 张武虹 陈理想 《厦门大学学报(自然科学版)》 北大核心 2025年第4期675-681,共7页
[目的]轨道角动量(orbital angular momentum,OAM)高维叠加态的远场衍射图像不仅包含OAM信息,还包含远场传输信息,且图样复杂,其复值谱重建的非神经网络方法效率低,传统神经网络又需要大量训练资源.针对这一问题,对物理模型驱动训练的... [目的]轨道角动量(orbital angular momentum,OAM)高维叠加态的远场衍射图像不仅包含OAM信息,还包含远场传输信息,且图样复杂,其复值谱重建的非神经网络方法效率低,传统神经网络又需要大量训练资源.针对这一问题,对物理模型驱动训练的神经网络方法进行研究.[方法]一方面利用OAM高维叠加态的远场衍射模型生成一系列的远场衍射图像,另一方面利用该物理模型验证OAM复值谱重建结果,从而将物理模型嵌入图像的生成与重建过程,以达到降低对训练数据规模的依赖,提高训练效率的目的.[结果]仅需单次测量,通过2000次迭代即可实现OAM复值谱重建神经网络的训练.在强度为模拟图像强度最大值的1/20的均匀噪声下,多种模拟条件下该方案重建结果均有良好效果,且在较理想模拟条件下保真度可达0.99.[结论]这为高维OAM复值谱的重建提供了一种新的思路. 展开更多
关键词 OAM谱重建 深度学习 神经网络 物理模型驱动
在线阅读 下载PDF
针对深度神经网络的高效光学对抗攻击
12
作者 戚富琪 高海昌 +1 位作者 李博凌 邹翔 《西安电子科技大学学报》 北大核心 2025年第2期1-12,共12页
随着对抗攻击算法的不断更新,深度神经网络面临的安全风险愈加严峻。由于光学现象在真实世界中出现频繁,对光学对抗攻击的抗干扰能力直观反应了深度神经网络在实际应用中的安全性。然而,目前光学对抗攻击方面的研究普遍存在光学对抗扰... 随着对抗攻击算法的不断更新,深度神经网络面临的安全风险愈加严峻。由于光学现象在真实世界中出现频繁,对光学对抗攻击的抗干扰能力直观反应了深度神经网络在实际应用中的安全性。然而,目前光学对抗攻击方面的研究普遍存在光学对抗扰动失真和优化不稳定的问题。为此,提出了一种新型光学攻击方法AdvFlare,以便于探究眩光扰动对深度神经网络安全性的影响。AdvFlare构造了一种参数化的眩光仿真模型,该模型对眩光的形状和颜色等多个属性进行建模,仿真效果好。在此基础上,提出了参数空间限制、随机初始化和分步优化的策略,解决了对抗扰动失真与收敛困难的问题。实验结果表明,与现有方法相比,AdvFlare能够以极高的成功率让深度神经网络误分类,具有稳定和扰动逼真度高的优点。此外,还发现,无论在数字域还是物理域,利用AdvFlare进行对抗训练能够显著提高深度神经网络的抗干扰能力,对提高公共交通场景下的模型鲁棒性有启发作用。 展开更多
关键词 深度神经网络 对抗攻击 眩光效应 模型鲁棒性 对抗训练
在线阅读 下载PDF
多阶特征向量融合的深度神经网络产品推荐算法
13
作者 李克潮 张继成 《计算机工程与设计》 北大核心 2025年第6期1742-1749,共8页
为充分利用用户和产品的信息,缓解数据稀疏、冷启动的问题,提出一种多阶特征向量融合的深度神经网络产品推荐(MFVF)。引入预训练模型(BERT)提升对产品描述文档、评论文本的语义理解。根据产品类别、社交关系,挖掘基于类别与社交关系的... 为充分利用用户和产品的信息,缓解数据稀疏、冷启动的问题,提出一种多阶特征向量融合的深度神经网络产品推荐(MFVF)。引入预训练模型(BERT)提升对产品描述文档、评论文本的语义理解。根据产品类别、社交关系,挖掘基于类别与社交关系的用户、产品潜在一阶特征向量。连同用户和产品评分的潜在一阶特征向量,经过广义矩阵分解(GMF)层构建二阶特征向量,作为深度神经网络隐藏层的输入。对深度神经网络隐藏层输出的高阶特征向量进行拼接,得到用户对产品的预测偏好。通过对比实验,验证了所提算法推荐质量得到较大提升。 展开更多
关键词 产品描述文档 评论文本 社交网络 深度神经网络 深度学习 推荐算法 预训练模型 多阶特征向量
在线阅读 下载PDF
基于多精度深度神经网络的汽车气动外形优化设计方法
14
作者 邬晓敬 高然 马龙 《空气动力学学报》 CSCD 北大核心 2024年第7期103-111,I0002,共10页
在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经... 在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经网络(multi-fidelity deep neural network, MFDNN)的汽车外形优化设计方法,以减少优化设计中所需的高精度数据个数,从而有效提升优化速度、降低优化成本。将所发展的优化方法应用于快背式MIRA标准模型减阻优化设计中,优化结果表明,该方法能够充分融合不同精度数据所蕴含的知识,加速气动外形优化进程,提升优化效率。以收敛用时作为评价指标,在取得相近或更优优化结果的前提下,基于多精度神经网络的优化框架的收敛速度是基于单精度神经网络的离线优化框架的5.85倍,是基于单精度神经网络的在线优化框架的2.81倍。 展开更多
关键词 多精度深度神经网络模型 汽车气动外形优化设计 迁移学习 数据融合
在线阅读 下载PDF
轻量级深度神经网络模型适配边缘智能研究综述 被引量:9
15
作者 徐小华 周长兵 +2 位作者 胡忠旭 林仕勋 喻振杰 《计算机科学》 CSCD 北大核心 2024年第7期257-271,共15页
随着物联网和人工智能的迅猛发展,边缘计算和人工智能的结合催生了边缘智能这一新的研究领域。边缘智能具备一定的计算能力,能够提供实时、高效和智能的响应。它在智能城市、工业物联网、智能医疗、自动驾驶以及智能家居等领域都具有重... 随着物联网和人工智能的迅猛发展,边缘计算和人工智能的结合催生了边缘智能这一新的研究领域。边缘智能具备一定的计算能力,能够提供实时、高效和智能的响应。它在智能城市、工业物联网、智能医疗、自动驾驶以及智能家居等领域都具有重要的应用。为了提升模型的准确度,深度神经网络往往采用更深、更大的架构,导致了模型参数的显著增加、存储需求的上升和计算量的增大。受限于物联网边缘设备在计算能力、存储空间和能源资源方面的局限,深度神经网络难以被直接部署到这些设备上。因此,低内存、低计算资源、高准确度且能实时推理的轻量级深度神经网络成为了研究热点。文中首先回顾边缘智能的发展历程,并分析轻量级深度神经网络适应边缘智能的现实需求,提出了两种构建轻量级深度神经网络模型的方法:深度模型压缩技术和轻量化架构设计。接着详细讨论了参数剪枝、参数量化、低秩分解、知识蒸馏以及混合压缩5种主要的深度模型压缩技术,归纳它们各自的性能优势与局限,并评估它们在常用数据集上的压缩效果。之后深入分析轻量化架构设计中的调整卷积核大小、降低输入通道数、分解卷积操作和调整卷积宽度的策略,并比较了几种常用的轻量化网络模型。最后,展望轻量级深度神经网络在边缘智能领域的未来研究方向。 展开更多
关键词 边缘智能 深度神经网络 轻量级神经网络 模型压缩 轻量化架构设计
在线阅读 下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化 被引量:3
16
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
在线阅读 下载PDF
面向深度神经网络大规模分布式数据并行训练的MC^(2)能耗模型 被引量:1
17
作者 魏嘉 张兴军 +2 位作者 王龙翔 赵明强 董小社 《计算机研究与发展》 EI CSCD 北大核心 2024年第12期2985-3004,共20页
深度神经网络(deep neural network,DNN)在许多现代人工智能(artificial intelligence,AI)任务中取得了最高的精度.近年来,使用高性能计算平台进行大规模分布式并行训练DNN越来越普遍.能耗模型在设计和优化DNN大规模并行训练和抑制高性... 深度神经网络(deep neural network,DNN)在许多现代人工智能(artificial intelligence,AI)任务中取得了最高的精度.近年来,使用高性能计算平台进行大规模分布式并行训练DNN越来越普遍.能耗模型在设计和优化DNN大规模并行训练和抑制高性能计算平台过量能耗方面起着至关重要的作用.目前,大部分的能耗模型都是从设备的角度出发对单个设备或多个设备构成的集群进行能耗建模,由于缺乏从能耗角度对分布式并行DNN应用进行分解剖析,导致罕有针对分布式DNN应用特征进行建模的能耗模型.针对目前最常用的DNN分布式数据并行训练模式,从DNN模型训练本质特征角度出发,提出了“数据预处理(materials preprocessing)-前向与反向传播(computing)-梯度同步与更新(communicating)”三阶段MC^(2)能耗模型,并通过在国产E级原型机天河三号上使用最多128个MT节点和32个FT节点训练经典的VGG16和ResNet50网络以及最新的Vision Transformer网络验证了模型的有效性和可靠性.实验结果表明,MC^(2)与真实能耗测量结果相差仅为2.84%,相较4种线性比例能耗模型以及AR,SES,ARIMA时间预测模型准确率分别提升了69.12个百分点,69.50个百分点,34.58个百分点,13.47个百分点,5.23个百分点,22.13个百分点,10.53个百分点.通过使用的模型可以在超算平台得到DNN模型的各阶段能耗和总体能耗结果,为评估基于能耗感知的DNN大规模分布式数据并行训练及推理各阶段任务调度、作业放置、模型分割、模型裁剪等优化策略的效能提供了基础. 展开更多
关键词 深度神经网络 能耗模型 大规模分布式训练 数据并行 超级计算机
在线阅读 下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法 被引量:1
18
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习
在线阅读 下载PDF
深度神经网络模型任务切分及并行优化方法 被引量:1
19
作者 巨涛 刘帅 +1 位作者 王志强 李林娟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2739-2752,共14页
为解决传统手工切分神经网络模型计算任务并行化方法面临的并行化难度大、训练耗时长、设备利用率低等问题,提出了一种基于深度神经网络(DNN)模型特性感知的任务切分及并行优化方法。结合硬件计算环境,对模型计算特性进行动态分析,获取... 为解决传统手工切分神经网络模型计算任务并行化方法面临的并行化难度大、训练耗时长、设备利用率低等问题,提出了一种基于深度神经网络(DNN)模型特性感知的任务切分及并行优化方法。结合硬件计算环境,对模型计算特性进行动态分析,获取模型内部相关性和各类参数属性,构建原始计算任务有向无环图(DAG);利用增强反链,构建DAG节点间可分区聚类的拓扑关系,将原始DAG转换为易于切分的反链DAG;通过拓扑排序生成反链DAG状态序列,并使用动态规划将状态序列切分为不同执行阶段,分析最佳分割点进行模型切分,实现模型分区与各GPU间动态匹配;对批量进行微处理,通过引入流水线并行实现多迭代密集训练,提高GPU利用率,减少训练耗时。实验结果表明:与已有模型切分方法相比,在CIFAR-10数据集上,所提模型切分及并行优化方法可实现各GPU间训练任务负载均衡,在保证模型训练精度的同时,4 GPU加速比达到3.4,8 GPU加速比为3.76。 展开更多
关键词 深度神经网络模型并行 模型切分 流水线并行 反链 并行优化
在线阅读 下载PDF
基于深度神经网络的杉木树高-胸径模型研建
20
作者 王贵林 谭伟 陈波涛 《林草资源研究》 北大核心 2024年第1期82-87,共6页
利用深度神经网络(DNN)模型建立杉木的树高-胸径模型,寻求一种更加高效的杉木树高预测方法。以贵州省清镇市国有林场49块样地中杉木的胸径、树高数据为研究对象,分成不同比例的训练集和测试集,训练集占比分别为20%,30%,40%,50%,60%,70%,... 利用深度神经网络(DNN)模型建立杉木的树高-胸径模型,寻求一种更加高效的杉木树高预测方法。以贵州省清镇市国有林场49块样地中杉木的胸径、树高数据为研究对象,分成不同比例的训练集和测试集,训练集占比分别为20%,30%,40%,50%,60%,70%,80%;对应的测试集占比分别为80%,70%,60%,50%,40%,30%,20%。利用DNN构建树高-胸径模型,并将其与11个传统基础模型进行比较,通过R^(2)、RMSE和MAE对比选出预测效果最好的模型,并根据最优模型添加林木胸径与优势木平均胸径比(DDH),以提高模型的预测精度。利用DNN模型建立的树高-胸径模型在训练集占比为20%的情况下,加入DDH因子后其预测精度R^(2)达到0.89。利用DNN构建杉木树高-胸径模型对杉木树高进行预测,在使用较小数据量的前提下加入DDH因子能够提高对杉木树高的预测效果。 展开更多
关键词 杉木 深度神经网络 林木胸径与优势木平均胸径比 树高-胸径模型
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部