期刊文献+
共找到398篇文章
< 1 2 20 >
每页显示 20 50 100
基于注意力循环神经网络的联合深度推荐模型
1
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于深度神经网络的风力机疲劳载荷代理模型研究
2
作者 黄国庆 刘伟杰 +3 位作者 王彬滨 彭留留 杨庆山 谭舒 《太阳能学报》 北大核心 2025年第4期398-405,共8页
提出一种基于深度神经网络的风力机疲劳载荷代理模型,旨在解决风力机场址评估效率低下的问题。开展基于深度神经网络(DNN)的风力机疲劳载荷代理模型研究。首先,根据平均风速、湍流强度、风切变、偏航误差、入流角和空气密度6维环境变量... 提出一种基于深度神经网络的风力机疲劳载荷代理模型,旨在解决风力机场址评估效率低下的问题。开展基于深度神经网络(DNN)的风力机疲劳载荷代理模型研究。首先,根据平均风速、湍流强度、风切变、偏航误差、入流角和空气密度6维环境变量的分布和相关性进行准蒙特卡洛抽样,获得10000个环境变量样本。然后,采用TurbSim和OpenFAST对NREL 5 MW参考风力机进行仿真得到载荷时程,并通过MLife计算得到1 Hz的等效疲劳载荷(DEL)数据库。最后,运用DNN方法建立DEL的代理模型并对模型精度进行详细验证。结果表明:基于DNN的DEL代理模型具有较高的预测精度,计算效率得到显著提升。 展开更多
关键词 风力机 疲劳载荷 OpenFAST 深度神经网络 代理模型
在线阅读 下载PDF
有限元模型修正中的贝叶斯深度神经网络构架优化设计
3
作者 何宇轩 尹涛 王曦 《振动与冲击》 北大核心 2025年第6期184-190,共7页
贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相... 贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相比于单隐含层在复杂高维数据拟合上通常具有更强的泛化能力,但针对多隐含层BNN构架优化设计问题的研究目前尚未见报道。该研究旨在针对多隐含层BNN并结合有限元模型修正问题开展构架优化设计研究,发展基于证据对数的多隐含层BNN网络性能定量量度,并提出一种实现多隐含层BNN各隐含层神经元数量同步优化的高效算法,获得针对具体模型修正问题的多隐含层BNN构架优化设计方案。通过基于现场实测模态参数的某大跨度钢结构人行桥模型修正验证了所提出方法的正确性和有效性。 展开更多
关键词 结构系统识别 结构健康监测 有限元模型修正 贝叶斯深度神经网络 构架优化设计
在线阅读 下载PDF
基于深度卷积神经网络的泌尿系结石成分输尿管镜图像诊断模型构建
4
作者 陈琼秋 孔祥辉 +4 位作者 陈合益 方崇国 陈武 陈大可 徐晓敏 《浙江临床医学》 2025年第2期243-246,共4页
目的采用深度卷积神经网络(CNN)构建用于诊断泌尿系结石成分的输尿管镜(URS)图像分析模型。方法收集2022年1月至2024年7月本院800例接受泌尿系结石URS手术治疗患者的资料,经过筛选,最终获得2475张高质量URS图像数据,随机分为训练集(70%... 目的采用深度卷积神经网络(CNN)构建用于诊断泌尿系结石成分的输尿管镜(URS)图像分析模型。方法收集2022年1月至2024年7月本院800例接受泌尿系结石URS手术治疗患者的资料,经过筛选,最终获得2475张高质量URS图像数据,随机分为训练集(70%)和测试集(30%)。采用在ImageNet数据集上预训练的Inception v3、ResNet50、AlexNet、VGG 19、DenseNet等网络架构,通过迁移学习技术构建了泌尿系结石成分分析模型。此外,还比较各模型的分类性能,并与泌尿外科医师在术中URS下的评估结果进行对比。结果在训练集和测试集上对构建的泌尿系结石成分URS图像诊断模型进行评估发现,Inception v3、ResNet50、AlexNet、VGG 19、DenseNet模型均具有较高的分类能力。其中Inception v3模型表现最佳,具有最高的准确度(训练集98.10%,测试集98.00%)、AUC值(训练集0.852,测试集0.834)、特异度(训练集82.42%,测试集81.37%)及敏感度(训练集88.36%,测试集86.43%)。一致性检验结果表明,各泌尿系结石成分URS图像诊断模型与医师经验诊断具有较好的一致性,并且Inception v3模型的分类一致性最佳(P<0.001)。结论深度学习技术在泌尿系结石成分诊断中显示出一定的应用潜力。基于CNN构建的泌尿系结石成分URS图像诊断模型具有较好的分类能力,可用于预测泌尿系结石成分。 展开更多
关键词 深度卷积神经网络 泌尿系结石 输尿管镜图像 诊断模型
在线阅读 下载PDF
基于深度神经网络的高效人脸检测算法设计与实现
5
作者 张佳颖 李爱军 《山西电子技术》 2025年第1期41-44,共4页
为解决大数据背景下,训练和测试数据日益庞杂,神经网络模型规模不断扩大,权重参数数量猛增,网络结构日益复杂,最终导致模型效率下降等问题,本文提出了一种人脸检测算法,充分利用了稀疏的小规模多尺度卷积核的优势来提高模型效率,并且加... 为解决大数据背景下,训练和测试数据日益庞杂,神经网络模型规模不断扩大,权重参数数量猛增,网络结构日益复杂,最终导致模型效率下降等问题,本文提出了一种人脸检测算法,充分利用了稀疏的小规模多尺度卷积核的优势来提高模型效率,并且加入了1x1的过滤器来降低权重维度。经实验证明,与现有模型相比,算法在不损失精度的情况下,权重数量大幅减少。 展开更多
关键词 机器学习 深度学习 深度神经网络 人脸检测 模型压缩
在线阅读 下载PDF
基于多精度深度神经网络的汽车气动外形优化设计方法
6
作者 邬晓敬 高然 马龙 《空气动力学学报》 CSCD 北大核心 2024年第7期103-111,I0002,共10页
在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经... 在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经网络(multi-fidelity deep neural network, MFDNN)的汽车外形优化设计方法,以减少优化设计中所需的高精度数据个数,从而有效提升优化速度、降低优化成本。将所发展的优化方法应用于快背式MIRA标准模型减阻优化设计中,优化结果表明,该方法能够充分融合不同精度数据所蕴含的知识,加速气动外形优化进程,提升优化效率。以收敛用时作为评价指标,在取得相近或更优优化结果的前提下,基于多精度神经网络的优化框架的收敛速度是基于单精度神经网络的离线优化框架的5.85倍,是基于单精度神经网络的在线优化框架的2.81倍。 展开更多
关键词 多精度深度神经网络模型 汽车气动外形优化设计 迁移学习 数据融合
在线阅读 下载PDF
面向织物疵点检测神经网络模型的研究进展
7
作者 刁宇涵 祝双武 赵妍 《纺织科技进展》 2025年第3期21-29,共9页
疵点严重影响了织物外观质量,织物疵点自动检测技术对提高检测效率、降低人工成本、提高纺织企业生产智能化水平都具有重要的意义;因基于深度学习的神经网络具有强大的特征提取能力,近些年越来越多的研究人员将其用于织物疵点自动检测... 疵点严重影响了织物外观质量,织物疵点自动检测技术对提高检测效率、降低人工成本、提高纺织企业生产智能化水平都具有重要的意义;因基于深度学习的神经网络具有强大的特征提取能力,近些年越来越多的研究人员将其用于织物疵点自动检测过程中,提出了很多用于织物疵点检测的神经网络模型。为了提高织物疵点的检测性能和效率,对基于CNN(Convolutional Neural Networks)、生成模型和DETR(Detection Transformer)等当前主流网络模型的检测原理进行概述;分析以这几种网络为主干的多个神经网络模型,讨论其优缺点以及目前它们在织物疵点检测上的应用状况和面临的挑战;展望DETR相关算法的研究趋势。 展开更多
关键词 深度学习 织物疵点检测 卷积神经网络(CNN) 生成模型 DETR
在线阅读 下载PDF
基于深度神经网络的工程建造进度智能预判研究
8
作者 唐国锋 罗小斌 《建设监理》 2025年第1期16-21,共6页
随着现代工程建设规模的不断扩大和技术复杂度的日益增加,确保项目高效、有序地推进,以准时完成并达到预期竣工目标,已成为工程管理领域亟待解决的关键难题。基于此,提出了一种进度智能预判的方法。该方法通过深度神经网络学习技术,对... 随着现代工程建设规模的不断扩大和技术复杂度的日益增加,确保项目高效、有序地推进,以准时完成并达到预期竣工目标,已成为工程管理领域亟待解决的关键难题。基于此,提出了一种进度智能预判的方法。该方法通过深度神经网络学习技术,对工程进度相关因素及多维度数据进行深度挖掘和智能分析,从而精准捕捉进度变化的细微趋势并提前揭示潜在的进度风险,实现对工程进度的准确预判,为项目管理者提供及时且有力的决策支持。同时,通过工程实践验证了所提出方法的有效性和优越性。 展开更多
关键词 深度神经网络 建筑信息模型 工程建造 进度预判 智能预判
在线阅读 下载PDF
基于GA-BP神经网络的高湿度环境下混凝土碳化深度预测研究
9
作者 莫林 梁维 《红水河》 2025年第2期124-131,共8页
为预测连续高湿度环境下混凝土碳化深度,通过制备9组不同配合比的混凝土试件并开展碳化试验,系统研究碳化龄期、水胶比、粉煤灰掺量、矿粉掺量及相对湿度对混凝土碳化深度的影响。基于试验数据,建立BP和GA-BP神经网络模型,并对两种模型... 为预测连续高湿度环境下混凝土碳化深度,通过制备9组不同配合比的混凝土试件并开展碳化试验,系统研究碳化龄期、水胶比、粉煤灰掺量、矿粉掺量及相对湿度对混凝土碳化深度的影响。基于试验数据,建立BP和GA-BP神经网络模型,并对两种模型预测结果进行对比分析。结果表明:GA-BP模型的R2较BP模型提高了0.91%,MAE、MSE和RMSE均有所降低,显示出更优的预测性能;碳化龄期和水胶比是影响碳化深度的主导因素,相对湿度和矿物掺合料也具有显著影响。该研究可为实际工程中混凝土配合比的优化设计提供理论支持和实践指导。 展开更多
关键词 混凝土碳化深度 GA-BP神经网络 高湿度环境 预测模型 影响因素分析 主成分分析法
在线阅读 下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化 被引量:1
10
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
在线阅读 下载PDF
深度神经网络模型任务切分及并行优化方法 被引量:1
11
作者 巨涛 刘帅 +1 位作者 王志强 李林娟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2739-2752,共14页
为解决传统手工切分神经网络模型计算任务并行化方法面临的并行化难度大、训练耗时长、设备利用率低等问题,提出了一种基于深度神经网络(DNN)模型特性感知的任务切分及并行优化方法。结合硬件计算环境,对模型计算特性进行动态分析,获取... 为解决传统手工切分神经网络模型计算任务并行化方法面临的并行化难度大、训练耗时长、设备利用率低等问题,提出了一种基于深度神经网络(DNN)模型特性感知的任务切分及并行优化方法。结合硬件计算环境,对模型计算特性进行动态分析,获取模型内部相关性和各类参数属性,构建原始计算任务有向无环图(DAG);利用增强反链,构建DAG节点间可分区聚类的拓扑关系,将原始DAG转换为易于切分的反链DAG;通过拓扑排序生成反链DAG状态序列,并使用动态规划将状态序列切分为不同执行阶段,分析最佳分割点进行模型切分,实现模型分区与各GPU间动态匹配;对批量进行微处理,通过引入流水线并行实现多迭代密集训练,提高GPU利用率,减少训练耗时。实验结果表明:与已有模型切分方法相比,在CIFAR-10数据集上,所提模型切分及并行优化方法可实现各GPU间训练任务负载均衡,在保证模型训练精度的同时,4 GPU加速比达到3.4,8 GPU加速比为3.76。 展开更多
关键词 深度神经网络模型并行 模型切分 流水线并行 反链 并行优化
在线阅读 下载PDF
微型位移传感器固有非线性神经网络校正研究
12
作者 华洪良 丁心一 +2 位作者 张静 吴小锋 廖振强 《兵器装备工程学报》 北大核心 2025年第1期175-181,共7页
微型碳膜位移传感器具有结构紧凑、可靠、低成本等诸多优点,在农业机械、机器人末端执行器、医疗手术器械等领域具有广阔的应用前景。由于碳膜厚度制造误差,导致微型碳膜位移传感器存在固有非线性,影响其测量精度。针对微型位移传感器... 微型碳膜位移传感器具有结构紧凑、可靠、低成本等诸多优点,在农业机械、机器人末端执行器、医疗手术器械等领域具有广阔的应用前景。由于碳膜厚度制造误差,导致微型碳膜位移传感器存在固有非线性,影响其测量精度。针对微型位移传感器固有非线性校正问题,采用神经网络方法,构建非线性校正模型,对传感器固有非线性进行校正。通过仿真与实验相结合的方法,从校正精度、实时解算速度2个维度,将神经网络非线性校正模型和现有PCM、BCM模型进行对比研究。研究结果表明,增加模型阶数,可以有效提高校正精度。对于BCM和神经网络非线性校正模型而言,三阶模型即可实现精度收敛。经过三阶PCM、BCM和神经网络非线性模型校正,传感器测量误差可分别降低46.1%、89.0%和89.6%。因此,神经网络非线性校正模型具有更高的校正精度。此时,PCM、BCM和神经网络非线性校正模型实时解算时间分别为0.48、0.49、0.85 ms,能够基本满足5 ms级高性能控制器应用需求。 展开更多
关键词 位移传感器 非线性校正模型 神经网络方法 测量精度 实时解算
在线阅读 下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法
13
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习
在线阅读 下载PDF
深度神经网络模型水印研究进展
14
作者 谭景轩 钟楠 +2 位作者 郭钰生 钱振兴 张新鹏 《上海理工大学学报》 CAS CSCD 北大核心 2024年第3期225-242,共18页
随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所... 随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所具备的不同条件,将其分为白盒水印、黑盒水印和无盒水印3类方法,并对各类方法按照水印嵌入机制或适用模型对象的不同进行细分,深入分析了各类方法的主要原理、实现手段和发展趋势。然后,对模型水印的攻击方法进行了系统总结和归类,揭示了神经网络水印面对的主要威胁和安全问题。在此基础上,对各类模型水印中的经典方法进行了性能比较和分析,明确了各个方法的优势和不足,帮助研究者根据实际的应用场景选用合适的水印方法,为后续研究提供基础。最后,讨论了当前深度神经网络模型水印面临的挑战,并展望未来可能的研究方向,旨在为相关的研究提供参考。 展开更多
关键词 深度神经网络 知识产权保护 神经网络水印 白盒水印 黑盒水印 无盒水印 水印攻击 模型安全
在线阅读 下载PDF
融合蛋白质语言模型与深度神经网络的植物蛋白质相互作用预测研究
15
作者 古海博 王成凤 +2 位作者 金远 池方爱 李颜娥 《电子技术应用》 2024年第4期22-28,共7页
预测植物中的蛋白质-蛋白质相互作用(PPI)具有重要的生物学意义。同时采用了4种编码方法及深度神经网络构建了蛋白质相互作用预测模型。结果表明,提出的融合蛋白质语言模型Ankh与深度神经网络的方法构建的PPI预测模型性能在3种植物数据... 预测植物中的蛋白质-蛋白质相互作用(PPI)具有重要的生物学意义。同时采用了4种编码方法及深度神经网络构建了蛋白质相互作用预测模型。结果表明,提出的融合蛋白质语言模型Ankh与深度神经网络的方法构建的PPI预测模型性能在3种植物数据集上均获得了最优的AUPR和AUC值,Sen及MCC值也均优于其他4种蛋白质相互作用预测模型。当模型在水稻、大豆的植物PPI数据集上进行测试时,所提出的模型AUPR值分别为0.8025、0.7301,AUC值分别为0.9562、0.9507。这些优异的结果表明,融合蛋白质语言模型Ankh的PPI模型可以作为植物蛋白质相互作用预测的一个有前途的工具。 展开更多
关键词 植物蛋白质相关性 蛋白质语言模型 深度神经网络
在线阅读 下载PDF
基于模型剪枝的深度神经网络分级授权方法的实现
16
作者 宋允飞 《现代信息科技》 2024年第8期128-132,137,共6页
基于现有深度神经网络模型无法根据使用权限进行分级授权的问题,设计提出了一种新型的DNN模型分级授权方法,其可以根据模型权限不同分发不同模型精度。该方法依据模型剪枝技术实现了模型性能的分级,利用特定的剪枝速率或剪枝阈值对模型... 基于现有深度神经网络模型无法根据使用权限进行分级授权的问题,设计提出了一种新型的DNN模型分级授权方法,其可以根据模型权限不同分发不同模型精度。该方法依据模型剪枝技术实现了模型性能的分级,利用特定的剪枝速率或剪枝阈值对模型进行剪枝和微调,通过在剪枝和微调阶段对模型进行调整从而使模型输出不同等级的准确率,最后将不同的用户权限与对应等级的准确率相匹配。在多个数据集和DNN模型上进行了实验,并利用CIFAR-10和CIFAR-100数据集进行验证。实验结果表明,该方法能够有效地将模型的性能分级,在多个DNN模型上都有良好的效果。 展开更多
关键词 深度神经网络 分级授权 版权保护 模型剪枝
在线阅读 下载PDF
基于网络搜索数据和深度神经网络的社会消费品零售总额预测研究
17
作者 程开明 刘书成 +1 位作者 雷洛 陈晓颖 《运筹与管理》 CSSCI CSCD 北大核心 2024年第12期203-209,I0091-I0096,共13页
为弥补传统预测变量及预测技术的不足,本文基于深度学习长期和短期时间序列网络(LSTNet),结合网络搜索数据与政府统计指标,构建LSTNet&BI模型开展浙江省及地级市社会消费品零售总额的预测研究。研究发现:(1)引入网络搜索数据能够有... 为弥补传统预测变量及预测技术的不足,本文基于深度学习长期和短期时间序列网络(LSTNet),结合网络搜索数据与政府统计指标,构建LSTNet&BI模型开展浙江省及地级市社会消费品零售总额的预测研究。研究发现:(1)引入网络搜索数据能够有效提高LSTNet模型的预测性能与预测精度;(2)LSTNet&BI模型具有较好的泛化能力,对浙江省社会消费品零售总额的短期和长期预测效果较稳定,其预测性能与预测精度均优于其他基准模型;(3)LSTNet&BI模型具备较强的稳健性,对杭州市、绍兴市和衢州市社会消费品零售总额的预测效果也较好。 展开更多
关键词 社会消费品零售总额 网络搜索数据 深度神经网络 LSTNet&BI模型
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
18
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于图神经网络用于交通流预测研究综述
19
作者 解瑞航 《中国储运》 2025年第1期96-96,共1页
随着智能交通系统的发展,交通流预测成为一个关键问题。图神经网络(GNNs)作为一种强大的时空数据分析工具,近年来在交通流预测领域得到了广泛的应用。本文综述了GNNs在交通流预测中的应用,分析了其优势和存在的挑战,同时探讨了其未来可... 随着智能交通系统的发展,交通流预测成为一个关键问题。图神经网络(GNNs)作为一种强大的时空数据分析工具,近年来在交通流预测领域得到了广泛的应用。本文综述了GNNs在交通流预测中的应用,分析了其优势和存在的挑战,同时探讨了其未来可能的研究方向。由于城市化进程不断加剧和人口爆发式增长,交通网络的复杂性也随之不断增加。城市面临许多与交通相关的问题,包括空气污染和交通拥堵。基于交通预测的早期干预被视为提高交通系统效率和缓解交通相关问题的关键。传统的交通流预测方法通常依赖于统计模型和机器学习算法。然而,随着深度学习和GNNs技术的出现,研究者们开始探索新的方法来处理交通流预测中的复杂时空依赖关系。 展开更多
关键词 神经网络 机器学习算法 交通流预测 智能交通系统 深度学习 统计模型 空气污染 交通预测
在线阅读 下载PDF
基于双输入输出卷积神经网络代理模型的油藏自动历史拟合研究
20
作者 陈旭 张凯 +3 位作者 刘晨 张金鼎 张黎明 姚军 《油气地质与采收率》 CAS CSCD 北大核心 2024年第3期165-177,共13页
传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确... 传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确定性参数作为深度学习代理模型的输入参数。现有的深度学习代理模型常为单一输入输出的神经网络模型架构,并未考虑油藏自动历史拟合方法需要对多个油藏不确定性参数进行调整,且需要训练多个深度学习代理模型以实现对油藏含水饱和度场分布及压力场分布的预测。为此,提出了一种基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法,将油藏渗透率场分布及相对渗透率参数作为输入,使用双输入输出卷积神经网络同时对油藏含水饱和度场分布及压力场分布进行预测,利用Peaceman方程计算产量,并耦合到多重数据同化集合平滑器(ES-MDA)方法中,对油藏渗透率场分布及相对渗透率参数进行反演更新,实现较为高效的油藏自动历史拟合求解。研究结果表明:双输入输出卷积神经网络代理模型在指定时间步的油藏含水饱和度场分布、压力场分布的预测精度均为93%以上。相较于传统油藏自动历史拟合方法,基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法避免了多次调用油藏数值模拟器的计算耗时问题,提高了拟合效率。 展开更多
关键词 油藏自动历史拟合 油藏数值模拟 深度学习 代理模型 双输入输出卷积神经网络
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部