期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
多示例学习的簇频繁性分析及双角度融合嵌入
1
作者 杨梅 张靖宇 +1 位作者 闵帆 方宇 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期531-541,共11页
多示例学习(Multi-Instance Learning,MIL)的训练数据是由若干个未带标记的示例组成的带标记的包,基于嵌入的方法,通过将包嵌入成单向量来解决包表示问题,然而大部分现有方法忽略了示例与包的联系,难以保证所选示例的代表性.同时,单角... 多示例学习(Multi-Instance Learning,MIL)的训练数据是由若干个未带标记的示例组成的带标记的包,基于嵌入的方法,通过将包嵌入成单向量来解决包表示问题,然而大部分现有方法忽略了示例与包的联系,难以保证所选示例的代表性.同时,单角度的嵌入方法无法有效地提取正、负包的差异信息,使嵌入向量的质量较差.提出一种多示例学习的簇频繁性分析及双角度融合嵌入(FADE).簇频繁性分析技术从正、负子空间中分别筛选部分示例作为子空间的簇心,依据簇心将子空间聚类成簇,再计算簇频繁性指标,选择频繁性较高的簇的簇心组成子空间代表示例集.双角度融合嵌入技术基于正、负子空间代表示例集和差值嵌入函数,分别从正、负角度挖掘信息,融合两个角度信息获得最终的嵌入向量.在29个数据集上与七个MIL算法进行了对比实验,结果表明,FADE的分类准确率总体上优于七个对比算法,在图像数据集上有显著优势,在文本和网页数据集上也表现良好. 展开更多
关键词 多示例学习 嵌入方法 簇频繁性 示例来源 双角度融合
在线阅读 下载PDF
采用双阶段多示例学习网络的语音情感识别 被引量:2
2
作者 张石清 陈晨 赵小明 《计算机科学与探索》 CSCD 北大核心 2024年第12期3300-3310,共11页
在语音情感识别任务中,当处理不同时长的语音信号时,通常将每句语音信号分割成若干等长片段,然后根据所有片段预测结果的平均值来获得最终的情感分类。然而,这种处理方法要求用户的情绪表达在整个语音信号中是均匀分布的,但是这并不符... 在语音情感识别任务中,当处理不同时长的语音信号时,通常将每句语音信号分割成若干等长片段,然后根据所有片段预测结果的平均值来获得最终的情感分类。然而,这种处理方法要求用户的情绪表达在整个语音信号中是均匀分布的,但是这并不符合实际情况。针对上述问题,提出一种采用双阶段多示例学习网络的语音情感识别方法。第一阶段,将每句语音信号视为“包”,并将其分割成若干等长片段。每个语音片段视为“示例”,并提取多种声学特征,输入到相应的局部声学特征编码器,学习出各自对应的深度特征向量。然后,使用一致性注意力对不同的声学特征进行特征交互和增强。第二阶段,设计一个基于多示例学习的混合聚合器,用于在全局尺度上融合示例预测和示例特征,计算“包”级预测得分。提出一种示例蒸馏模块,用于过滤情感信息较弱的冗余示例。将蒸馏结果组成伪包,采用一种自适应特征聚合策略对伪包进行特征聚合,并通过分类器获得预测结果。将示例级和伪包预测结果进行自适应决策聚合,以获得最终的情感分类结果。该方法在IEMOCAP和MELD公开数据集分别获得73.02%和44.92%的识别率,实验结果表明了该方法的有效性。 展开更多
关键词 语音情感识别 多示例学习 示例蒸馏 一致性注意力 聚合
在线阅读 下载PDF
基于多模态多示例学习的免疫介导性肾小球疾病自动分类方法 被引量:1
3
作者 龙楷兴 翁丹仪 +3 位作者 耿舰 路艳蒙 周志涛 曹蕾 《南方医科大学学报》 CAS CSCD 北大核心 2024年第3期585-593,共9页
目的探讨如何利用多模态深度学习方法,联合光学显微镜(OM)、免疫荧光显微镜(IM)及透射电子显微镜(TEM)对应的3种图像进行免疫介导性肾小球疾病分类。方法基于273例患者的病理图像进行回顾性研究,构建多模态多示例模型对3种免疫介导性的... 目的探讨如何利用多模态深度学习方法,联合光学显微镜(OM)、免疫荧光显微镜(IM)及透射电子显微镜(TEM)对应的3种图像进行免疫介导性肾小球疾病分类。方法基于273例患者的病理图像进行回顾性研究,构建多模态多示例模型对3种免疫介导性的肾小球疾病——免疫球蛋白A肾病(IgAN)、膜性肾病(MN)、狼疮性肾炎(LN)进行分类。该模型采用示例水平的多示例学习(I-MIL)方法挑选患者的TEM图像并与同一患者的OM图像和IM图像进行多模态特征融合。通过该模型与单模态、双模态模型的比较,探究3种模态之间的不同组合形式以及模态特征融合方式的特性。结果联合OM、IM以及TEM图像建立的多模态多示例模型准确率为(88.34±2.12)%,优于准确率为(87.08±4.25)%的最优的单模态模型,以及准确率为(87.92±3.06)%的最优的双模态模型。结论本研究成功建立基于OM、IM及TEM三种模态图像的多模态多示例模型,并验证了采用多示例学习结合多模态学习方法对免疫介导性肾小球疾病分类的有效性。 展开更多
关键词 肾活检病理 肾小球疾病 深度学习 多模态融合 多示例学习
在线阅读 下载PDF
基于多示例学习图卷积网络的隐写者检测
4
作者 钟圣华 张智 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期771-789,共19页
隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者,对解决非法使用隐写术的问题具有重要意义.本文提出一种基于多示例学习图卷积网络(Multiple-instance learning graph convolutional network,MILGCN)的隐写... 隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者,对解决非法使用隐写术的问题具有重要意义.本文提出一种基于多示例学习图卷积网络(Multiple-instance learning graph convolutional network,MILGCN)的隐写者检测算法,将隐写者检测形式化为多示例学习(Multiple-instance learning, MIL)任务.本文中设计的共性增强图卷积网络(Graph convolutional network, GCN)和注意力图读出模块能够自适应地突出示例包中正示例的模式特征,构建有区分度的示例包表征并进行隐写者检测.实验表明,本文设计的模型能够对抗多种批量隐写术和与之对应的策略. 展开更多
关键词 图像隐写者检测 图卷积网络 多示例学习 示例包表征
在线阅读 下载PDF
基于深度学习模型辅助穿刺病理图像预测乳腺癌新辅助治疗疗效的研究
5
作者 罗云昭 蒋宏传 徐峰 《中国全科医学》 北大核心 2025年第19期2407-2413,共7页
背景术前新辅助治疗(NAT)是治疗局部晚期乳腺癌的标准化手段,但只有部分患者对NAT敏感,在NAT前对患者进行疗效预测至关重要。既往研究利用统计学方法结合临床数据或深度学习方法结合影像学图像预测乳腺癌NAT疗效,效果欠佳。目的利用多... 背景术前新辅助治疗(NAT)是治疗局部晚期乳腺癌的标准化手段,但只有部分患者对NAT敏感,在NAT前对患者进行疗效预测至关重要。既往研究利用统计学方法结合临床数据或深度学习方法结合影像学图像预测乳腺癌NAT疗效,效果欠佳。目的利用多示例学习(MIL)方法训练基于乳腺癌粗针穿刺全切片图像(WSI)的深度学习(DL-CNB)模型,实现对病理性完全缓解(pCR)的预测和相关肿瘤区域的可视化。方法采用回顾性研究模式,收集北京朝阳医院2019年4月—2022年4月收治的经NAT的乳腺癌患者的临床资料和NAT前穿刺苏木精-伊红(HE)染色切片。依据纳排标准共筛选出195例患者。根据Miller-Payne(MP)分级将患者分为pCR组(MP=5级,n=40)和non-pCR组(MP=1~4级,n=155)。首先对临床资料进行分析,构建pCR影响因素的Logistic回归模型。将所有WSI图像按照4∶1的比例随机划分为训练集和测试集,并从训练集中取出25%的数据作为验证集。标记每张WSI中全部肿瘤细胞区域,通过滑动窗口取块、数据筛选、数据增强、归一化处理等步骤准备训练集。对比5种卷积神经网络模型,选择最优模型作为DL-CNB的特征提取器。设置参数训练DL-CNB模型。利用独立测试集测试模型,评价DL-CNB的预测价值。根据由注意力模块获得的权重绘制热力图,实现WSI中与预测相关重要区域的可视化。结果pCR组组织学分级高、ER阴性、PR阴性、HER2阳性、Ki-67高表达的患者占比高于non-pCR组(P<0.05)。与HR+/HER2-相比,HR-/HER2+(OR=10.189,95%CI=3.225~32.187)和HR+/HER2+(OR=3.349,95%CI=1.152~9.737)可测预患者达到pCR状况(P<0.05)。Logistic回归模型的受试者工作特征曲线下面积(AUC)为0.769,准确率为81.000%。DL-CNB模型独立测试集AUC为0.914,准确率为84.211%。随机选取独立测试集中某张标签为non-pCR和某张标签为pCR的WSI肿瘤区域进行可视化展示。结论DL-CNB模型实现了通过乳腺癌穿刺WSI对新辅助治疗pCR的预测和重要区域的可视化,其预测结果优于临床数据预测模型。由此,本研究能够为符合NAT适应证的乳腺癌患者提供临床决策参考,辅助实现个体化精准治疗,对改善患者生活质量及生存预期具有重大意义。 展开更多
关键词 乳腺肿瘤 乳腺癌新辅助治疗 穿刺病理全切片图像 深度学习模型 多示例学习算法 精准治疗
在线阅读 下载PDF
基于多示例学习和随机蕨丛检测的在线目标跟踪 被引量:6
6
作者 罗艳 项俊 +1 位作者 严明君 侯建华 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1605-1611,共7页
基于检测的目标跟踪方法目前在计算机视觉领域受到了广泛的关注,这类方法通过训练判别分类器将目标对象从背景中分离出来;分类器的训练是根据当前的跟踪状态从当前帧中提取正负样本来进行,但训练样本的不准确将导致分类器退化产生漂移... 基于检测的目标跟踪方法目前在计算机视觉领域受到了广泛的关注,这类方法通过训练判别分类器将目标对象从背景中分离出来;分类器的训练是根据当前的跟踪状态从当前帧中提取正负样本来进行,但训练样本的不准确将导致分类器退化产生漂移。该文提出一种能够有效克服目标漂移的跟踪算法,采用检测器和跟踪器相结合的框架,利用中值流算法作为跟踪器,提高跟踪点的可靠性;级联若干个随机蕨弱分类器构成强分类器作为检测器;用在线多示例学习方法更新检测器,提高检测精度;最后将检测器、跟踪器的结果相融合得到最终的目标位置。实验结果表明,与其它方法相比,该方法对目标漂移有更强的鲁棒性。 展开更多
关键词 目标跟踪 中值流(MF) 随机蕨丛 在线多示例学习(mil)
在线阅读 下载PDF
在线加权多示例学习实时目标跟踪 被引量:29
7
作者 陈东成 朱明 +2 位作者 高文 孙宏海 杨文波 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1661-1667,共7页
由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最... 由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最大值的方法从弱分类器集中选择K个最优的弱分类器,给每个弱分类器赋不同的权值,生成一个强分类器;最后,在新的一帧中抽取目标和背景样本,用生成的强分类器对待分类的目标和背景进行分类;分类结果映射成概率值,概率最大样本的位置就是所要跟踪目标的位置。对不同视频序列的测试结果表明,该跟踪算法的跟踪正确率达93%,目标大小为43pixel×36pixel时处理帧率约为25frame/s。与原始多示例学习跟踪算法相比,本算法的实时性提高了67%。 展开更多
关键词 多示例学习 目标跟踪 分类器 权值
在线阅读 下载PDF
局部特征与多示例学习结合的超声图像分类方法 被引量:16
8
作者 丁建睿 黄剑华 +1 位作者 刘家锋 张英涛 《自动化学报》 EI CSCD 北大核心 2013年第6期861-867,共7页
利用全局特征对超声图像进行描述具有一定的局限性,而且对图像进行手工标注的成本过高,为解决上述问题,本文提出了一种利用局部特征描述超声图像,并结合多示例学习对超声图像进行分类的新方法.粗略定位图像中的感兴趣区域(Region of int... 利用全局特征对超声图像进行描述具有一定的局限性,而且对图像进行手工标注的成本过高,为解决上述问题,本文提出了一种利用局部特征描述超声图像,并结合多示例学习对超声图像进行分类的新方法.粗略定位图像中的感兴趣区域(Region of interest,ROI),并提取局部特征,将感兴趣区域看作由局部特征构成的示例包,采用自组织映射(Self-organizing map,SOM)的方法对示例特征进行矢量量化,采用Bag of words方法将示例特征映射到示例包空间,进而采用传统的支持向量机对示例包进行分类.本文提出的方法在临床超声图像上进行了实验,实验结果表明,该方法具有良好的泛化能力和较高的准确性. 展开更多
关键词 图像分类 局部特征 多示例学习 超声图像
在线阅读 下载PDF
一种基于原型学习的多示例卷积神经网络 被引量:16
9
作者 何克磊 史颖欢 +3 位作者 高阳 霍静 汪栋 张缨 《计算机学报》 EI CSCD 北大核心 2017年第6期1265-1274,共10页
卷积神经网络是一种全监督的深度学习模型,其要求样本类标完整.在样本类标缺失等弱监督的实际应用中,卷积神经网络的应用受到了极大的制约.为解决弱标记环境下的多示例学习问题,该文提出了一种新的多示例深度卷积网络模型.该模型引入了... 卷积神经网络是一种全监督的深度学习模型,其要求样本类标完整.在样本类标缺失等弱监督的实际应用中,卷积神经网络的应用受到了极大的制约.为解决弱标记环境下的多示例学习问题,该文提出了一种新的多示例深度卷积网络模型.该模型引入了一种新的原型学习层.该层使用基于原型度量的算法,实现了示例特征至包特征的映射,从而使网络能够在包的层面给予类标信息,进而完成整个模型的学习过程.该文首先在肺癌病理图像细胞分类的问题中,验证了该网络的性能.实验表明,相较于传统基于手工图像特征的方法,该文所提出的方法在准确率方面约有12%的提升.相较于卷积神经网络结合传统多示例学习的方法,所提出的方法在各项指标上同样取得了更好的效果.此外,在自然图像分类数据集GRAZ-02上,所提出的方法相较于目前最优的算法也取得了相当的效果. 展开更多
关键词 深度学习 多示例学习 原型学习 卷积神经网络 图像分类 人工智能
在线阅读 下载PDF
基于流形学习的多示例回归算法 被引量:16
10
作者 詹德川 周志华 《计算机学报》 EI CSCD 北大核心 2006年第11期1948-1955,共8页
多示例学习是一种新型机器学习框架,以往的研究主要集中在多示例分类上,最近多示例回归受到了国际机器学习界的关注.流形学习旨在获得非线性分布数据的内在结构,可以用于非线性降维.文中基于流形学习技术,提出了用于解决多示例回归问题... 多示例学习是一种新型机器学习框架,以往的研究主要集中在多示例分类上,最近多示例回归受到了国际机器学习界的关注.流形学习旨在获得非线性分布数据的内在结构,可以用于非线性降维.文中基于流形学习技术,提出了用于解决多示例回归问题的ManiMIL算法.该算法首先对训练包中的示例降维,利用降维结果出现坍缩的特性对多示例包进行预测.实验表明,ManiMIL算法比现有的多示例算法例如Citation-kNN等有更好的性能. 展开更多
关键词 机器学习 多示例学习 多示例回归 流形学习
在线阅读 下载PDF
示例学习的广义扩张矩阵算法及其实现 被引量:11
11
作者 赵美德 李星原 +1 位作者 洪家荣 陈彬 《计算机学报》 EI CSCD 北大核心 1994年第9期703-707,共5页
本文对扩张矩阵理论加以扩充,提出关于公式的扩张矩阵的概念,并据此实现一个广义扩张矩阵算法叫做AE9.本文还将AE9和AQ(15)应用于几个实际领域的学习问题,如睡眠状态的分类,手写数字识别等.结果都表明AE9比AQ(... 本文对扩张矩阵理论加以扩充,提出关于公式的扩张矩阵的概念,并据此实现一个广义扩张矩阵算法叫做AE9.本文还将AE9和AQ(15)应用于几个实际领域的学习问题,如睡眠状态的分类,手写数字识别等.结果都表明AE9比AQ(15)分类精度更高. 展开更多
关键词 示例学习 知识获取 扩张矩阵
在线阅读 下载PDF
基于多示例学习的中文Web目录页面推荐 被引量:17
12
作者 黎铭 薛晓冰 周志华 《软件学报》 EI CSCD 北大核心 2004年第9期1328-1335,共8页
多示例学习为中文 Web 挖掘提供了一种新的思路.提出中文 Web 目录页面推荐这种特殊的 Web 挖掘任务,并且将其转化为多示例学习问题来解决.在真实世界数据集上的实验结果显示,该方法能够有效地解决该问题.
关键词 多示例学习 WEB挖掘 机器学习 中文Web目录页面推荐 前缀树
在线阅读 下载PDF
多示例深度学习目标跟踪 被引量:4
13
作者 程帅 孙俊喜 +2 位作者 曹永刚 刘广文 韩广良 《电子与信息学报》 EI CSCD 北大核心 2015年第12期2906-2912,共7页
为解决多示例跟踪算法中外观模型和运动模型不足导致跟踪精度不高的问题,该文提出多示例深度学习目标跟踪算法。针对原始多示例跟踪算法中采用Haar-like特征不能有效表达图像信息的缺点,利用深度去噪自编码器提取示例图像的有效特征,实... 为解决多示例跟踪算法中外观模型和运动模型不足导致跟踪精度不高的问题,该文提出多示例深度学习目标跟踪算法。针对原始多示例跟踪算法中采用Haar-like特征不能有效表达图像信息的缺点,利用深度去噪自编码器提取示例图像的有效特征,实现图像信息的本质表达,易于分类器正确分类,提高跟踪精度。针对多示例学习跟踪算法中选取弱特征向量不能更换,难以反映目标自身和外界条件变化的缺点,在选择弱分类器过程中,实时替换判别力最弱的特征以适应目标外观的变化。针对原始多示例跟踪算法中运动模型中仅假设帧间物体运动不会超过某个范围,不能有效反映目标的运动状态的缺点,引入粒子滤波算法对目标进行预测,提高跟踪的准确性。在复杂环境下不同图片序列实验结果表明,与多示例跟踪算法及其他跟踪算法相比,该文算法具有更高跟踪精确度和更好的鲁棒性。 展开更多
关键词 目标跟踪 多示例学习 深度学习 弱特征更换 粒子滤波
在线阅读 下载PDF
基于嵌入式Bootstrap的主动学习示例选择方法 被引量:8
14
作者 田春娜 高新波 李洁 《计算机研究与发展》 EI CSCD 北大核心 2006年第10期1706-1712,共7页
在Bootstrap示例选择算法的基础上提出一种新的嵌入式Bootstrap算法.该算法适用于一大类主动机器学习中训练示例的选择问题.新算法在保持和原Bootstrap算法相当的训练时间的前提下可得到更典型的训练示例集,从而解决了计算条件对训练集... 在Bootstrap示例选择算法的基础上提出一种新的嵌入式Bootstrap算法.该算法适用于一大类主动机器学习中训练示例的选择问题.新算法在保持和原Bootstrap算法相当的训练时间的前提下可得到更典型的训练示例集,从而解决了计算条件对训练集规模的限制,使训练所得预测器具有更高的性能.从理论上分析了新算法的有效性,然后将其与原Bootstrap算法分别应用到基于AdaBoost的正面人脸检测任务中进行对比实验,实验结果与理论分析一致. 展开更多
关键词 主动学习 示例选择 BOOTSTRAP 嵌入式Bootstrap 人脸检测
在线阅读 下载PDF
基于改进在线多示例学习算法的机器人目标跟踪 被引量:12
15
作者 王丽佳 贾松敏 +1 位作者 李秀智 王爽 《自动化学报》 EI CSCD 北大核心 2014年第12期2916-2925,共10页
提出基于改进的在线多示例学习算法(Improved multiple instance learning,IMIL)的移动机器人目标跟踪方法.该方法利用射频识别系统(Radio frequency identification,RFID)粗定位IMIL算法的搜索区域,然后应用IMIL算法实现目标跟踪.该方... 提出基于改进的在线多示例学习算法(Improved multiple instance learning,IMIL)的移动机器人目标跟踪方法.该方法利用射频识别系统(Radio frequency identification,RFID)粗定位IMIL算法的搜索区域,然后应用IMIL算法实现目标跟踪.该方法保证了机器人跟踪系统的连续性,解决了目标突然转弯时的跟踪问题.IMIL算法采用从低维空间提取的压缩特征描述包中示例,以降低算法耗时.通过最大化弱分类器与极大似然概率的内积,选择判别能力强的弱分类器,避免了弱分类器选择过程中多次计算包概率和示例概率,进一步提高算法的实时处理能力.计算包概率时该算法平等对待各示例,保证概率高的示例对包概率的贡献度,克服跟踪漂移问题.跟踪过程中,结合当前跟踪结果与目标模板间的相似性分数在线实时调整分类器,提高了算法的自适应能力.最后将本文方法在视频和移动机器人上进行实验.实验结果表明,该方法在目标运动突变及外观改变时具有较强的鲁棒性和准确性,并满足系统的实时性要求. 展开更多
关键词 改进的在线多示例学习 目标跟踪 射频识别系统 压缩特征
在线阅读 下载PDF
基于多示例学习技术的Web目录页面链接推荐 被引量:6
16
作者 薛晓冰 韩洁凌 +1 位作者 姜远 周志华 《计算机研究与发展》 EI CSCD 北大核心 2007年第3期406-411,共6页
在Web目录页面中,向用户推荐其感兴趣的链接有助于用户高效地访问网络资源.然而,用户往往不愿花费很多时间来标记训练样本,其提供的数据可能只能说明某个目录网页是否包含其感兴趣的内容,而不能明确标示出其感兴趣的具体链接.由于训练... 在Web目录页面中,向用户推荐其感兴趣的链接有助于用户高效地访问网络资源.然而,用户往往不愿花费很多时间来标记训练样本,其提供的数据可能只能说明某个目录网页是否包含其感兴趣的内容,而不能明确标示出其感兴趣的具体链接.由于训练数据中缺乏对链接的标记,但预测时却需要找出用户感兴趣的链接,这就使得Web目录页面链接推荐问题相当困难.CkNN-ROI算法被提出用于解决该问题.实验表明,CkNN-ROI算法在解决这一困难的链接推荐问题上比其他一些算法更为有效. 展开更多
关键词 多示例学习 机器学习 数据挖掘 WEB挖掘 链接推荐 Web目录页面
在线阅读 下载PDF
一种新的基于三维卷积共生梯度直方图和多示例学习的特殊视频检测算法 被引量:7
17
作者 宋伟 任栋 +1 位作者 于京 齐振国 《计算机学报》 EI CSCD 北大核心 2019年第1期149-163,共15页
已有的基于梯度方向直方图信息的视频内容检测算法侧重在二维的视频帧上提取特征,忽略了视频内容在时间维度上的相关性.提取局部梯度间潜在的共生关系特征可一定程度上提高算法的检测准确率;同时,对相邻特征池化可有效减少特征降维过程... 已有的基于梯度方向直方图信息的视频内容检测算法侧重在二维的视频帧上提取特征,忽略了视频内容在时间维度上的相关性.提取局部梯度间潜在的共生关系特征可一定程度上提高算法的检测准确率;同时,对相邻特征池化可有效减少特征降维过程中的信息丢失.基于此,利用视频帧间结构信息通过卷积运算构建共生梯度直方图的三维结构,然后对相邻特征池化实现描述特征的有效降维,解决了忽略帧间信息影响识别准确率以及高维度特征难以训练的问题;将视频特征映射到多示例学习中的示例和包,非常容易地实现了对不同长度视频的检测.在公开测试数据集Hockey、Movie上进行测试,实验结果显示,Hockey数据集上算法的检测准确率高于现有最优算法3%,Movie数据集上的检测准确率高于现有最优算法0.5%,验证了新特征与算法的有效性. 展开更多
关键词 视频内容检测 梯度方向直方图 多示例学习 卷积 池化 极限学习
在线阅读 下载PDF
基于稀疏编码和集成学习的多示例多标记图像分类方法 被引量:14
18
作者 宋相法 焦李成 《电子与信息学报》 EI CSCD 北大核心 2013年第3期622-626,共5页
该文基于稀疏编码和集成学习提出了一种新的多示例多标记图像分类方法。首先,利用训练包中所有示例学习一个字典,根据该字典计算示例的稀疏编码系数;然后基于每个包中所有示例的稀疏编码系数计算包特征向量,从而将多示例多标记问题转化... 该文基于稀疏编码和集成学习提出了一种新的多示例多标记图像分类方法。首先,利用训练包中所有示例学习一个字典,根据该字典计算示例的稀疏编码系数;然后基于每个包中所有示例的稀疏编码系数计算包特征向量,从而将多示例多标记问题转化为多标记问题;最后利用多标记分类算法进行求解。为了提高分类器的泛化能力,对多个分类器进行集成。在多示例多标记图像数据集上的实验结果表明所提方法与其它方法相比有更好的性能。 展开更多
关键词 图像分类 多示例多标记学习 稀疏编码 集成学习
在线阅读 下载PDF
基于稀疏表达的多示例学习目标追踪算法 被引量:5
19
作者 苏巧平 刘原 +1 位作者 卜英乔 黄河 《计算机工程》 CAS CSCD 2013年第3期213-217,222,共6页
追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失。为此,提出一种基于稀疏表达的多示例学习目标追踪算法。联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码... 追踪目标在经历较大姿势变化时,会导致追踪目标偏移甚至丢失。为此,提出一种基于稀疏表达的多示例学习目标追踪算法。联合多示例学习与稀疏表达方法,将目标物体的局部稀疏编码作为多示例学习的训练数据,通过学习正负样本的局部稀疏编码获得一个多示例学习的分类器,分类的结果与粒子滤波框架相结合,估计目标在整个视频序列中的运动状态。实验结果表明,该算法稳定性较好,与增量学习追踪算法、范式学习追踪算法和多示例学习追踪算法相比,其中心位置误差率减少30%以上。 展开更多
关键词 目标追踪 多示例学习 稀疏表达 分类器 粒子滤波 数据字典
在线阅读 下载PDF
示例学习的最大复合问题及算法 被引量:9
20
作者 陈彬 洪家荣 《计算机学报》 EI CSCD 北大核心 1997年第2期139-144,共6页
本文证明了示例学习中的最大复合问题(MGC)是NP难题,给出了求解最大复合问题的近似算法,并将此示例学习算法应用于手写数字识别.实验证明,基于最大复合的学习算法和AQ15相比,速度快、得到的公式少、匹配精度高.
关键词 示例学习 最大复合问题 NP难题 机器学习
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部