期刊文献+
共找到801篇文章
< 1 2 41 >
每页显示 20 50 100
基于多目标多任务进化算法的含可再生能源混合发电系统优化调度 被引量:11
1
作者 查永星 吴婷 +3 位作者 彭建春 王贵斌 高羿晨 梁博淼 《华北电力大学学报(自然科学版)》 CAS 北大核心 2020年第1期70-78,共9页
可再生能源发电的快速发展为电力系统的安全和经济运行带来了新的挑战。在此背景下,构建了能够计及火电阀点效应非线性,风电、光伏发电系统出力不确定性和水电一次能源浪费的多目标优化调度模型。假设风速服从Weibull分布、光照服从Bet... 可再生能源发电的快速发展为电力系统的安全和经济运行带来了新的挑战。在此背景下,构建了能够计及火电阀点效应非线性,风电、光伏发电系统出力不确定性和水电一次能源浪费的多目标优化调度模型。假设风速服从Weibull分布、光照服从Beta分布的前提下,含可再生能源混合发电系统优化模型综合考虑了能源利用、环境保护、成本以及损耗等限制因素。在此基础上,创新的引入了多目标多任务进化算法,同时优化多个任务的多个目标,并行处理多个发电系统的优化调度问题,从而大幅提高了搜索速度。仿真算例采用标准IEEE30节点和IEEE118节点系统,验证了该算法在解决多目标多任务多电源发电系统优化问题时的优越性。 展开更多
关键词 多能源发电系统 多目标多任务进化算法 帕累托前沿
在线阅读 下载PDF
自适应迁移的分解多目标多任务进化算法 被引量:2
2
作者 蔡倩倩 史旭华 《计算机工程》 CAS CSCD 北大核心 2023年第7期55-64,共10页
多目标多任务进化优化是多目标优化的一个重要研究方向,通过跨任务共享有益信息以同时解决多个相关任务的优化问题。然而,现有多目标多任务进化优化研究存在相似任务匹配准确度低、缺少对知识迁移的动态控制等问题。为提高多目标多任务... 多目标多任务进化优化是多目标优化的一个重要研究方向,通过跨任务共享有益信息以同时解决多个相关任务的优化问题。然而,现有多目标多任务进化优化研究存在相似任务匹配准确度低、缺少对知识迁移的动态控制等问题。为提高多目标多任务进化优化算法的优化效果,引入相似性动态指标和迁移概率动态调整机制,提出自适应迁移的分解多目标多任务进化算法。为了给目标任务子问题匹配关联度最高的迁移源,同时考虑种群的当前分布以及种群的进化方向2个指标,设计一种基于种群静态和动态特征相结合的迁移源匹配策略。为了合理地控制任务间的信息传递,提出基于种群进化状态的知识迁移概率自适应调整策略,在优化过程中根据优化任务的进化状态自适应地调整任务间的知识迁移概率,以满足优化任务在不同进化阶段对外部知识的需求。实验结果表明,相比MOEA/D、MO-MFEA、MO-MFEA-Ⅱ等算法,该算法具有较优的稳定性和收敛性,在常用的9组(18个独立任务)多目标多任务测试问题中有15个表现较优,优化率为83%。 展开更多
关键词 多目标多任务优化 进化算法 迁移优化 分解策略 自适应策略
在线阅读 下载PDF
基于进化多任务的稀疏大规模多目标优化 被引量:1
3
作者 梁正平 王侃 +2 位作者 周倩 王继刚 朱泽轩 《计算机学报》 北大核心 2025年第2期358-380,共23页
稀疏大规模多目标优化存在稀疏位置探测困难、搜索空间巨大等诸多挑战,现有为数不多的稀疏大规模多目标优化算法在稀疏位置的探测准确率和非零决策变量的优化程度方面尚存在较大提升空间.为进一步提升稀疏大规模多目标优化的性能,本文... 稀疏大规模多目标优化存在稀疏位置探测困难、搜索空间巨大等诸多挑战,现有为数不多的稀疏大规模多目标优化算法在稀疏位置的探测准确率和非零决策变量的优化程度方面尚存在较大提升空间.为进一步提升稀疏大规模多目标优化的性能,本文从辅助任务构建与优化、辅助任务重新初始化、知识迁移等三个方面,提出了基于进化多任务优化的稀疏大规模多目标优化算法(Evolutionary Multi-Task for Sparse Large-scale Multi-objective Op⁃timization,SLMO-EMT).其中,辅助任务构建与优化方面,基于主任务精英解的稀疏分布,采用两种不同的方式对决策变量的搜索空间进行限定,构建分别用于对稀疏位置和非零决策变量进行降维优化的两个辅助任务.辅助任务重新初始化方面,根据辅助任务在历史迭代中的知识迁移效果,对其搜索空间和当前种群进行更新,以使辅助任务可持续促进主任务的进化.知识迁移方面,首先基于轮询方式和各辅助任务的知识迁移概率,挑选用于知识迁移的辅助任务,再基于相似度挑选适合的知识受体,最后在子代生成过程中采用迁移知识引导的局部交叉,借助辅助任务的知识促进主任务的进化.为验证SLMO-EMT的性能,将其与8个先进的稀疏大规模多目标优化算法在1000-10000维的32个基准测试实例,以及8个应用测试实例上进行对比,实验结果表明SLMO-EMT对于稀疏大规模多目标优化问题的求解具有明显的竞争优势.SLMO-EMT的源代码已在Github上公开:https://github.com/CIA-SZU/WK. 展开更多
关键词 稀疏大规模多目标优化 进化多任务 辅助任务 知识迁移
在线阅读 下载PDF
车联网中基于位置信息映射和相关性评估的进化多任务优化算法
4
作者 沈俊杰 彭江 +1 位作者 郭坤银 刘凯 《电子学报》 北大核心 2025年第5期1661-1676,共16页
随着车联网(Internet of Vehicles,IoV)和智能交通系统的兴起,计算成本的增加和问题规模的扩大使得实时应用的实现变得极具挑战性,同时也为车载边缘计算(Vehicular Edge Computing,VEC)带来了大量亟待并行求解的组合优化问题.这些复杂... 随着车联网(Internet of Vehicles,IoV)和智能交通系统的兴起,计算成本的增加和问题规模的扩大使得实时应用的实现变得极具挑战性,同时也为车载边缘计算(Vehicular Edge Computing,VEC)带来了大量亟待并行求解的组合优化问题.这些复杂的实际问题往往具有非凸性、不可微性,甚至存在黑盒目标与约束条件,可能会超出传统数学方法的解决范围.进化多任务优化(Evolutionary Multi-Task Optimization,EMTO)作为一种新兴的多任务优化范式,通过充分利用任务间的潜在相关性,能够有效地实现多个独立优化任务的并行求解.本文设计了一种IoV显式EMTO框架,结合IoV任务的特点,深入挖掘任务间隐含的关联性,并提出了一种基于车辆位置映射和相关性评估的IoV EMTO算法.针对IoV环境下的多任务优化问题,本文对车-路数据路由(Data Routing,DR)、车-路服务迁移(Ser-vice Migration,SM)、车-车消息传输(Message Transmission,MT)和车-车任务卸载(Task Offloading,TO)四个问题进行联合优化,目标是在限定时间内最大化各个任务的交付率.进一步地,为了在任务相关性未知的情况下提升相关任务间的知识迁移效率,本文在算法中设计并引入了基于任务相关性评估的迁移机制.具体而言,通过计算链路间最长公共子序列来计算链路的相似度,针对不同的相关性分布情况设计了三种迁移策略,以确保算法在不同场景下的知识迁移能力.最后,本文通过实验验证和性能评估,验证了所提框架和算法的有效性,与其他的EMTO算法相比,本文所提算法在各优化问题上的收敛速度更快,种群间知识迁移后的求解效果更好,展现出良好的性能. 展开更多
关键词 车载边缘计算(VEC) 进化算法 多任务优化 显式知识转移 任务相关性评估
在线阅读 下载PDF
多目标进化算法的改进在齿轮减速器中的应用
5
作者 高淑芝 任学鹏 张义民 《机械设计与制造》 北大核心 2025年第4期190-193,197,共5页
分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群... 分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群的多样性与收敛性之间的平衡。首先,采用了一种均匀随机的权重向量生成方式进行初始化;其次,采用Tchebycheff分解方法进行子代的更新;再次,将提出的自适应方法对分解的多目标进化算法进行了改进;最后,通过在标准测试函数和齿轮减速器的优化仿真,证明了提出的算法的有效性。 展开更多
关键词 多目标优化 分解算法 自适应 进化算法应用
在线阅读 下载PDF
面向工业动态取送货问题的分解多目标进化算法
6
作者 蔡俊创 朱庆灵 +2 位作者 林秋镇 李坚强 明仲 《计算机科学》 北大核心 2025年第1期331-344,共14页
由于工业动态取送货问题具有垛口、时间窗、容量、后进先出装载等多种约束,现有的车辆路径算法大多只优化一个加权目标函数,在求解过程中难以保持解的多样性,所以容易陷入局部最优区域而停止收敛。针对上述问题,提出了一种融合高效局部... 由于工业动态取送货问题具有垛口、时间窗、容量、后进先出装载等多种约束,现有的车辆路径算法大多只优化一个加权目标函数,在求解过程中难以保持解的多样性,所以容易陷入局部最优区域而停止收敛。针对上述问题,提出了一种融合高效局部搜索策略的分解多目标进化算法。首先,该算法将工业动态取送货问题建模成多目标优化问题,进一步将其分解为多个子问题并同时进行求解。然后,利用交叉操作增强解的多样性,再使用局部搜索加快收敛速度。因此,该算法在求解该多目标优化问题时能够更好地平衡解的多样性和收敛性。最后,从种群中选择一个最好的解来完成当前时段的取送货任务。基于64个华为公司实际测试问题的仿真结果表明,该算法在求解工业动态取送货问题上的性能表现最优;同时,在20个京东物流大规模配送问题上的实验也验证了该算法良好的泛化性。 展开更多
关键词 动态取送货问题 分解方法 多目标进化算法 局部搜索 组合优化
在线阅读 下载PDF
基于半监督迁移学习的动态多目标进化算法
7
作者 刘阚蓉 李岩 +2 位作者 谭树彬 刘圆超 刘建昌 《控制理论与应用》 北大核心 2025年第1期1-12,共12页
动态多目标优化问题中的目标函数随系统运行环境的动态变化而改变,这将导致其Pareto最优前沿发生动态变化.在大多数动态多目标优化问题中,不同环境之间存在一定相关性,也就是说动态多目标优化算法可以利用以往环境信息对动态变化的Paret... 动态多目标优化问题中的目标函数随系统运行环境的动态变化而改变,这将导致其Pareto最优前沿发生动态变化.在大多数动态多目标优化问题中,不同环境之间存在一定相关性,也就是说动态多目标优化算法可以利用以往环境信息对动态变化的Pareto最优前沿进行实时追踪.为充分利用环境信息去实时追踪动态变化的Pareto最优前沿,本文提出一种基于半监督迁移学习的动态多目标进化算法(SSTL-DMOEA).SSTL-DMOEA包括两个核心组成部分,首先采用一种半监督知识迁移机制将历史环境有利信息迁移至当前环境,以帮助算法在当前环境生成较好的初始种群,从而可以提高算法在当前环境中的搜寻效率;其次,通过利用历史Pareto最优解集的中心点和新环境的进化信息在目标域中生成一系列样本点,这些点可以帮助算法建立更准确的预测模型.与4种先进的动态多目标优化算法相比,SSTL-DMOEA在处理动态多目标优化问题上具有一定的优越性. 展开更多
关键词 动态多目标优化 进化算法 知识迁移
在线阅读 下载PDF
面向复杂约束多目标优化问题的双种群双阶段进化算法
8
作者 袁志超 杨磊 +2 位作者 田井林 魏晓威 李康顺 《计算机应用》 北大核心 2025年第8期2656-2665,共10页
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行... 针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。 展开更多
关键词 约束多目标优化 双种群 双阶段 进化算法 约束处理方法 分类方法 随机扰动
在线阅读 下载PDF
动态任务构建的多任务算法求解MOVRPTW问题
9
作者 王宇东 武燕 《西安电子科技大学学报》 北大核心 2025年第3期242-256,共15页
带时间窗的多目标车辆路径问题(MOVRPTW)是一个重要且具有挑战性的物流问题。进化多任务算法(EMT)是一种通过任务间知识迁移提升算法寻优能力的新颖方法。文中提出一种动态构造辅助任务的方法,旨在增强任务间的知识迁移效果,从而提高原... 带时间窗的多目标车辆路径问题(MOVRPTW)是一个重要且具有挑战性的物流问题。进化多任务算法(EMT)是一种通过任务间知识迁移提升算法寻优能力的新颖方法。文中提出一种动态构造辅助任务的方法,旨在增强任务间的知识迁移效果,从而提高原始任务的寻优能力。文中采用动态更换辅助任务的思想改进多任务优化算法求解MOVRPTW问题,期望算法在任务间能持续提供有效的知识迁移。在算法的迭代过程中,当辅助任务不能提供有效迁移时,依据当前原始任务的非劣解的分布信息动态更换辅助任务以探索未搜索的方向,为提供更有效的知识迁移提供可能性。同时设计了从辅助任务到原始任务及原始任务到辅助任务的两种知识迁移方法来提高算法的的寻优能力。通过在大量标准测试算例上的仿真验证表明所提算法能够持续提供有效的知识迁移,显著提高EMT算法的寻优能力,为解决MOVRPTW问题提供了新的有效途径。 展开更多
关键词 动态辅助任务 进化多任务算法 知识迁移 MOVRPTW问题
在线阅读 下载PDF
解决动态约束多目标问题的复合预测进化算法
10
作者 郭知业 魏静萱 《控制理论与应用》 北大核心 2025年第2期335-343,共9页
动态约束多目标问题在路口交通管理、节能电力调度等现实场景中出现较多,其目标函数和约束条件都会随时间(环境)发生连续缓慢变化.求解这类动态问题的关键,是有效追踪问题的随环境变化的一组最优解集.为求解此类问题,首先,将约束变化分... 动态约束多目标问题在路口交通管理、节能电力调度等现实场景中出现较多,其目标函数和约束条件都会随时间(环境)发生连续缓慢变化.求解这类动态问题的关键,是有效追踪问题的随环境变化的一组最优解集.为求解此类问题,首先,将约束变化分为2类,并针对两类变化提出2个约束预测器,用以追踪可行区域;其次,将约束预测器与非线性预测器组合成复合预测策略,根据问题的不同变化情况使用策略中的对应预测器,消耗较少的资源获得预测解,加速寻优过程;再次,应用基于分解的多目标优化算法,将预测解优化得到最终的最优解.所提出的基于复合预测的动态多目标优化算法在8个动态变化的问题上与6个典型算法进行对比测试,实验结果表明,所提算法获得的解集在收敛性和多样性上具有显著优势,复合预测策略的预测性能较优. 展开更多
关键词 动态多目标优化 进化算法 动态约束条件
在线阅读 下载PDF
求解全局与局部最优解的多模态多目标进化算法研究进展与挑战
11
作者 吴同轩 冀俊忠 杨翠翠 《北京工业大学学报》 北大核心 2025年第7期867-882,共16页
为了揭示目前求解全局与局部最优解的多模态多目标进化算法研究与发展现状,首先,介绍了具有全局和局部最优解集的多模态多目标优化问题(multimodal multiobjective optimization problem, MMOP),说明了其相关定义和特点;其次,根据现有... 为了揭示目前求解全局与局部最优解的多模态多目标进化算法研究与发展现状,首先,介绍了具有全局和局部最优解集的多模态多目标优化问题(multimodal multiobjective optimization problem, MMOP),说明了其相关定义和特点;其次,根据现有求解该类问题的进化算法思想给出了一种分类体系,并对其中主要方法的技术特点进行了概述;然后,介绍了目前具有全局和局部最优解集的多模态多目标测试函数集,并给出了常用的评价指标;最后,通过分析领域中的挑战性问题,展望了未来多模态多目标进化算法研究的方向。 展开更多
关键词 多模态多目标优化 进化算法 分类体系 测试函数 评价指标 特征选择
在线阅读 下载PDF
基于镜像判断和改进父代选择的多目标进化算法
12
作者 王嘉诚 邹雨恒 +1 位作者 王珊珊 曾亮 《陕西科技大学学报》 北大核心 2025年第2期215-225,234,共12页
高维多目标进化算法在解决复杂帕累托前沿问题时,常面临收敛性和多样性难以平衡的问题.为解决这一问题,提出了一种基于镜像判断和改进父代选择的高维多目标进化算法.该算法首次结合成就标量函数和全局密度并应用在交配池中,使其在迭代... 高维多目标进化算法在解决复杂帕累托前沿问题时,常面临收敛性和多样性难以平衡的问题.为解决这一问题,提出了一种基于镜像判断和改进父代选择的高维多目标进化算法.该算法首次结合成就标量函数和全局密度并应用在交配池中,使其在迭代过程中不仅关注当前最优解,还兼顾解在整个空间的分布情况,从而实现了收敛性和多样性的统一.此外,针对算法在迭代过程中可能出现镜像的问题,本文提出了解决方案.具体来说,算法首先采用非支配排序,将临界层个体与参考向量相关联,随后判断其是否满足镜像对称准则,若满足则通过全局密度选取个体,达成“内紧外松”的目的,最大限度保证候选解的分布性,从而有效解决了选择压力不均的问题.最后将本文算法与最新的五种多目标算法在4种不同维度的测试问题上进行对比实验,并应用在两个实际案例中.实验结果表明:所提算法不仅能高效解决高维多目标优化问题,且能有效平衡收敛性和多样性. 展开更多
关键词 多目标进化算法 交配选择 聚合距离 收敛性 分布性
在线阅读 下载PDF
基于协同进化的混合变量多目标粒子群优化算法求解无人机协同多任务分配问题 被引量:45
13
作者 王峰 张衡 +1 位作者 韩孟臣 邢立宁 《计算机学报》 EI CAS CSCD 北大核心 2021年第10期1967-1983,共17页
无人机多机协同控制系统近年来已被广泛地应用在军事打击、海洋监测、陆地航拍和灾情探测等领域.针对无人机协同多任务分配问题,为了更加准确地描述无人机协同多任务分配场景,本文考虑实际应用场景下的多种复杂约束,并以无人机飞行总航... 无人机多机协同控制系统近年来已被广泛地应用在军事打击、海洋监测、陆地航拍和灾情探测等领域.针对无人机协同多任务分配问题,为了更加准确地描述无人机协同多任务分配场景,本文考虑实际应用场景下的多种复杂约束,并以无人机飞行总航程最少和任务完成时间最短为优化目标,构建了混合变量多约束的无人机协同多任务分配问题模型M-CMTAP.为了高效求解上述模型,本文提出一种基于协同进化的混合变量多目标粒子群优化算法C-MOPSO.C-MOPSO采用基于任务分配和路径规划的编码方法表示无人机的任务分配结果和路径规划结果及基于约束处理的可行解初始化方法生成可行粒子;同时利用基于结构学习的重组策略对粒子进行更新以提高种群的多样性和收敛性;并引入协同进化策略在两个子种群之间进行合作进化以提高算法的搜索效率.根据无人机和目标的分布状态设计4个代表性的测试实例并验证算法性能,实验结果表明,与其他采用协同进化策略的算法相比,所提算法在解的收敛性和解集多样性上均具有显著的性能优势. 展开更多
关键词 协同进化 粒子群优化算法 混合变量优化问题 多目标优化 无人机任务分配问题
在线阅读 下载PDF
基于双阶段搜索的约束进化多任务优化算法 被引量:2
14
作者 赵楷文 王鹏 童向荣 《计算机应用》 CSCD 北大核心 2024年第5期1415-1422,共8页
高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现... 高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现多样性、收敛性和可行性之间的平衡。首先,进化过程由探索和利用两个阶段组成,分别致力于加强算法在目标空间的广泛探索能力和高效搜索能力;其次,设计一种动态约束处理策略以平衡种群中可行解的比例,从而增强算法在可行区域的探索能力;再次,提出一种回退搜索策略,利用无约束Pareto前沿所包含的信息指导算法向约束Pareto前沿快速收敛;最后,在两个基准测试集中的23个问题上进行对比实验。实验结果表明,TEMA分别在14个和13个测试问题上取得最优反世代距离(IGD)值和超体积(HV)值,体现出明显优势。 展开更多
关键词 约束多目标优化问题 进化多任务优化算法 双阶段进化机制 进化算法 约束处理技术
在线阅读 下载PDF
基于进化多任务多目标优化的边缘计算任务卸载 被引量:4
15
作者 孔珊 郑玉琦 《计算机应用研究》 CSCD 北大核心 2024年第4期1164-1170,共7页
目前边缘计算卸载的主流方案是将其建模为一个多目标优化问题,即最小化能耗和延时。不同于已有研究,主要考虑边缘计算中,不同卸载区域的任务具有一定的相似性,可以利用任务的相似性加快算法的收敛速度和求解效果。以此基于进化多任务优... 目前边缘计算卸载的主流方案是将其建模为一个多目标优化问题,即最小化能耗和延时。不同于已有研究,主要考虑边缘计算中,不同卸载区域的任务具有一定的相似性,可以利用任务的相似性加快算法的收敛速度和求解效果。以此基于进化多任务优化,提出一种进化多任务多目标优化算法求解不同区域的任务卸载问题。该算法考虑了多个独立的待优化区域,将每个区域的任务卸载系统模型建模为一个多目标优化问题。通过学习不同区域的用户分布和待处理任务的相似性来动态调节种群的交流程度,加快了收敛速度,通过一次进化,实现对两个不同区域的优化。实验结果表明,算法在收敛速度及最优解分布的均匀性上均取得较好效果,可以获得边缘计算下的卸载部署优化方案。 展开更多
关键词 移动边缘计算 多目标优化 多任务进化优化 任务卸载
在线阅读 下载PDF
LeCMPSO算法求解异构无人机协同多任务重分配问题 被引量:3
16
作者 王峰 付青坡 +2 位作者 韩孟臣 邢立宁 吴虎胜 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1009-1017,共9页
无人机系统在军事领域有着广泛应用,由于战场环境复杂多变,无人机遭遇突发状况后需进行任务重分配.异构无人机是指多种类型的无人机,可完成单一无人机无法完成的多类型复杂任务,异构无人机协同多任务重分配问题约束条件复杂且包含混合变... 无人机系统在军事领域有着广泛应用,由于战场环境复杂多变,无人机遭遇突发状况后需进行任务重分配.异构无人机是指多种类型的无人机,可完成单一无人机无法完成的多类型复杂任务,异构无人机协同多任务重分配问题约束条件复杂且包含混合变量,现有多目标优化算法不能有效处理此类问题.为高效求解上述问题,本文构建多约束异构无人机协同多任务重分配问题模型,提出一种学习引导的协同多目标粒子群优化算法(LeCMPSO),该算法引入基于先验知识的初始化策略和基于历史信息学习的粒子更新策略,能有效避免不可行解的产生并提升算法的搜索效率.通过在4组实例上的仿真实验表明,与其他典型的协同进化多目标优化算法相比,所提算法在解集的多样性、收敛性及搜索时间方面均具有较好的性能. 展开更多
关键词 无人机多任务重分配 粒子群优化算法 多目标优化 协同进化
在线阅读 下载PDF
基于改进灰狼算法求解武器目标分配问题
17
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
基于变时段设计改进多目标差分进化算法的风/光/火/储日前优化调度 被引量:2
18
作者 齐郑 徐希茜 +1 位作者 熊巍 陈艳波 《电力系统保护与控制》 EI CSCD 北大核心 2024年第16期62-71,共10页
在高比例新能源馈入的新型电力系统中,新能源出力的不确定性导致火电难以满足调度计划的精度需求,风/光/火/储系统的经济调度求解算法面临严峻挑战。为此,提出一种基于变时段设计的多目标差分进化算法。首先按各时段负荷特征构建风/光/... 在高比例新能源馈入的新型电力系统中,新能源出力的不确定性导致火电难以满足调度计划的精度需求,风/光/火/储系统的经济调度求解算法面临严峻挑战。为此,提出一种基于变时段设计的多目标差分进化算法。首先按各时段负荷特征构建风/光/火/储系统的变时段日前调度规则。进而以系统运行经济成本与污染排放量为目标,基于多目标差分进化算法求解变时段系统日前调度模型的Pareto解集。最后,用IEEE 39节点系统进行测试。结果表明在风、光、储与火电的约束条件均符合校验的情形下,相较于其他算法,该方法使计算结果更加优化,火电机组出力跟踪调度计划效果显著提高,验证了所提方法的有效性。 展开更多
关键词 风/光/火/储系统 变时段设计 日前调度计划 多目标差分进化算法 优化调度
在线阅读 下载PDF
领导者引导与支配解进化的多目标矮猫鼬算法 被引量:5
19
作者 赵世杰 张红易 马世林 《计算机科学与探索》 CSCD 北大核心 2024年第2期403-424,共22页
面对现实中日益复杂的多目标优化问题,需要发展新型多目标优化算法应对挑战。提出一种基于领导者引导与支配解动态缩减进化的多目标矮猫鼬优化算法(MODMO)。领导者引导机制通过引入动态权衡因子以调控侦察猫鼬探寻土丘的搜索半径,同时... 面对现实中日益复杂的多目标优化问题,需要发展新型多目标优化算法应对挑战。提出一种基于领导者引导与支配解动态缩减进化的多目标矮猫鼬优化算法(MODMO)。领导者引导机制通过引入动态权衡因子以调控侦察猫鼬探寻土丘的搜索半径,同时以非劣解集构建外部存档并根据非支配排序层级确定出领导者,进而引导侦察猫鼬向多目标前沿面推进以改善算法的收敛性;支配解动态缩减进化策略是为克服非劣解外部存档维护过程中的解冗余问题而构建,其以支配关系和拥挤距离动态筛选支配解并存入外部存档,以支配解信息融入种群进化实现多目标潜在前沿的挖掘并增强算法的多样性。在ZDT、DTLZ与WFG基准函数上,与5种代表性比较算法的实验结果表明MODMO算法在收敛性与多样性上均具有显著优势。 展开更多
关键词 多目标优化 矮猫鼬优化算法 领导者引导机制 外部存档 支配解动态缩减进化策略
在线阅读 下载PDF
基于自适应采样策略的模糊分类代理辅助进化算法
20
作者 李二超 吴煜 《郑州大学学报(工学版)》 北大核心 2025年第2期51-59,共9页
针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策... 针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策略提高选择压力,兼顾收敛性与多样性,同时利用十折交叉验证得到精度信息用来划分状态;最后,设计了一种自适应模型管理策略,其考虑当前种群的收敛性、多样性和不确定性,并根据不同精度状态采用有针对性的采样方式,该算法能够在保证整体性能的前提下,合理减少真实评估次数。为验证所提算法性能,将该算法与其他4种算法在MaF、WFG测试集和汽车侧面碰撞设计与驾驶室设计的实际工程问题上进行了分析对比实验,实验结果表明:所提算法在有限次评估条件下,在解决昂贵多目标优化问题时具有较好的竞争力。 展开更多
关键词 代理辅助进化算法 代理模型 昂贵多目标优化问题 模型管理
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部