期刊文献+
共找到366篇文章
< 1 2 19 >
每页显示 20 50 100
基于直达路径信号残差和支持向量数据描述的非视距信号识别方法
1
作者 倪雪 曾海彧 杨文东 《电子与信息学报》 北大核心 2025年第6期1873-1884,共12页
非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特... 非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特征组合用于表征信号,基于此,为了使识别方法兼具样本获取成本低、环境适应能力好的特点,该文以构建在单个环境下采集单类信号数据作为分类模型的训练样本,在识别其它场景NLOS信号中有更好性能的方法为目的,设计了一种带DP信号残差训练的支持向量数据描述(SVDD)的识别方法。为了进一步提高识别准确率,将基于多层神经网络的深度特征提取技术引入SVDD中,设计了一种基于反向扩维的深度支持向量数据描述(DSVDD)的NLOS信号识别方法。实验结果表明:带DP信号残差训练的DSVDD方法只需在单个场景采集单类信号样本,且在训练集和测试集采集自不同场景时实现了85%以上的准确率,较只使用典型波形特征训练的SVDD提升了10%以上。 展开更多
关键词 超宽带定位 非视距信号识别 直达路径信号残差 支持向量数据描述 深度支持向量数据描述
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
2
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 二次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
多核支持向量数据描述分类方法研究 被引量:9
3
作者 卢明 刘黎辉 吴亮红 《计算机工程与应用》 CSCD 北大核心 2016年第18期68-73,共6页
核函数、惩罚因子、核参数是影响支持向量数据描述(SVDD)分类方法分类效果的重要因素。研究了多核支持向量数据描述(MKSVDD)分类方法,给出了多核支持向量数据描述分类方法的实现步骤,基于banana数据集分析了惩罚因子和核参数对分类效果... 核函数、惩罚因子、核参数是影响支持向量数据描述(SVDD)分类方法分类效果的重要因素。研究了多核支持向量数据描述(MKSVDD)分类方法,给出了多核支持向量数据描述分类方法的实现步骤,基于banana数据集分析了惩罚因子和核参数对分类效果的影响,重点讨论了多核函数的权值对支持向量数据描述边界分布的影响。仿真实验结果表明,与单核支持向量数据描述分类方法相比较,多核支持向量数据描述分类方法的分类效果更佳,为实际应用时参数的选择提供了参考。 展开更多
关键词 模式识别 支持向量数据描述 多核方法 最优超球半径 参数选择
在线阅读 下载PDF
基于多核支持向量数据描述的单类分类方法 被引量:4
4
作者 吴定海 张培林 +1 位作者 王怀光 傅建平 《计算机工程》 CAS CSCD 2013年第5期165-168,173,共5页
针对异常检测模型中,单核支持向量数据描述存在映射形式单一以及核函数、核参数选择困难的问题,提出一种多核优化组合的支持向量域描述的单类分类方法。在分析多核映射的核空间基础上,建立多核支持向量数据描述模型,以更灵活地描述训练... 针对异常检测模型中,单核支持向量数据描述存在映射形式单一以及核函数、核参数选择困难的问题,提出一种多核优化组合的支持向量域描述的单类分类方法。在分析多核映射的核空间基础上,建立多核支持向量数据描述模型,以更灵活地描述训练样本在高维特征空间的边界分布情况。采用目标函数的梯度下降法对该模型的多核组合权重进行分步寻优,并引入异常类测试样本来控制和评价分类器的描述精度和推广能力。仿真实验结果表明,该方法具有更好的学习能力和计算效率。 展开更多
关键词 模式识别 单类分类 多核学习 支持向量数据描述 异常检测
在线阅读 下载PDF
基于粒子群优化多核支持向量数据描述的广播式自动相关监视异常数据检测模型 被引量:22
5
作者 王布宏 罗鹏 +2 位作者 李腾耀 田继伟 尚福特 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2727-2734,共8页
广播式自动相关监视(ADS-B)作为新一代空中交通管理(ATM)通信协议,是未来空管监视系统的关键技术。目前,由于ADS-B采用明文格式广播发送数据,其安全性问题受到挑战。针对ADS-B易受到的欺骗干扰,该文将ADS-B位置数据和同步的二次雷达(SSR... 广播式自动相关监视(ADS-B)作为新一代空中交通管理(ATM)通信协议,是未来空管监视系统的关键技术。目前,由于ADS-B采用明文格式广播发送数据,其安全性问题受到挑战。针对ADS-B易受到的欺骗干扰,该文将ADS-B位置数据和同步的二次雷达(SSR)数据作差,将两者的差值作为样本数据。利用多核支持向量数据描述(MKSVDD)训练样本,得到了超球体分类器,此超球体分类器能检测出ADS-B测试样本中的异常数据。并且,通过粒子群算法(PSO)优化了GaussLapl和GaussTanh两种MKSVDD的惩罚因子、多核核函数系数以及核参数,提高了异常数据检测性能。实验结果表明,对于随机位置偏移、固定位置偏移、拒绝服务(DOS)攻击和重放攻击,粒子群优化多核支持向量数据描述(PSO-MKSVDD)模型能检测出这4种攻击类型的异常数据。且相较于其他机器学习和深度学习方法,该模型的适应性更好,异常检测的召回率和检测率更优。证明该模型可用于ADSB异常数据的检测。 展开更多
关键词 广播式自动相关监视 空中交通管理 异常检测 多核支持向量数据描述 粒子群优化
在线阅读 下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
6
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
在线阅读 下载PDF
基于核相似度支持向量数据描述的间歇过程监测 被引量:3
7
作者 王建林 马琳钰 +2 位作者 刘伟旻 邱科鹏 于涛 《化工学报》 EI CAS CSCD 北大核心 2017年第9期3494-3500,共7页
基于支持向量数据描述的间歇过程监测方法选择历史过程数据中最大的核距离作为控制限,忽略了高维空间中超球体的不规则性,导致基于该方法的过程监测精度不高。针对上述问题,提出了一种基于核相似度支持向量数据描述的间歇过程监测方法,... 基于支持向量数据描述的间歇过程监测方法选择历史过程数据中最大的核距离作为控制限,忽略了高维空间中超球体的不规则性,导致基于该方法的过程监测精度不高。针对上述问题,提出了一种基于核相似度支持向量数据描述的间歇过程监测方法,将间歇过程数据待监测样本与支持向量之间的核函数值作为相似度权重,利用该相似度对不同时刻的支持向量球心距加权求和,得到待监测间歇过程数据样本的动态控制限,通过判断待监测样本的球心距是否超过其动态控制限,实现间歇过程监测。所提方法综合考虑了超球体的不规则性和过程数据在高维空间分布的局部特性,以及间歇过程数据待监测样本的时变性,提高了间歇过程监测的准确性。利用数值仿真实验和半导体金属刻蚀实验验证了该方法的有效性。 展开更多
关键词 相似度 支持向量数据描述 动态监测 间歇过程
在线阅读 下载PDF
基于多阶段多核支持向量数据描述的间歇过程监控方法 被引量:2
8
作者 王晓慧 王延江 +2 位作者 邓晓刚 曹玉苹 王平 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期182-188,共7页
针对间歇过程数据的多阶段特性及复杂非线性特性,提出一种基于多阶段多核支持向量数据描述(MPMK-SVDD)的间歇过程故障检测方法。为充分挖掘间歇过程数据的多阶段信息,首先提出一种基于互信息相似矩阵的改进谱聚类方法,解决间歇过程数据... 针对间歇过程数据的多阶段特性及复杂非线性特性,提出一种基于多阶段多核支持向量数据描述(MPMK-SVDD)的间歇过程故障检测方法。为充分挖掘间歇过程数据的多阶段信息,首先提出一种基于互信息相似矩阵的改进谱聚类方法,解决间歇过程数据集的多阶段划分问题。进一步考虑到单一核函数难以充分描述过程数据的复杂非线性问题,设计一种基于多重核函数和核参数的SVDD监控模型,并通过贝叶斯推理构造全局监测统计量,以实现过程故障的有效监控。以青霉素发酵过程为仿真研究对象,验证方法的有效性。结果表明,提出的方法比传统的SVDD方法能更有效地检测过程故障,具有更高的故障检出率。 展开更多
关键词 故障检测 支持向量数据描述 贝叶斯推理 谱聚类 间歇过程
在线阅读 下载PDF
基于支持向量数据描述的局部放电类型识别 被引量:46
9
作者 唐炬 林俊亦 +1 位作者 卓然 陶加贵 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1046-1053,共8页
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法... 电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。 展开更多
关键词 局部放电 支持向量 SVM 支持向量数据描述 SVDD 拒识 模式识别
在线阅读 下载PDF
基于支持向量数据描述的异常检测方法 被引量:17
10
作者 杨敏 张焕国 +1 位作者 傅建明 罗敏 《计算机工程》 EI CAS CSCD 北大核心 2005年第3期39-42,共4页
提出了一种基于支持向量数据描述算法的异常检测方法。该方法将入侵检测看作是一种单值分类问题,建立正常行为的支持向量描述模型,通过该模型可以检测各种已知和未知的攻击行为。该方法是一种无监督的异常检测方法,能够在包含噪声的数... 提出了一种基于支持向量数据描述算法的异常检测方法。该方法将入侵检测看作是一种单值分类问题,建立正常行为的支持向量描述模型,通过该模型可以检测各种已知和未知的攻击行为。该方法是一种无监督的异常检测方法,能够在包含噪声的数据集进行模型训练,降低了训练集的要求。在KDD CUP'99 标准入侵检测数据集上进行实验,并与无监督聚类异常检测实验结果相比较,证实该方法能够获得较高检测率和较低误警率。 展开更多
关键词 异常检测方法 支持向量 入侵检测 数据 描述模型 无监督聚类 数据描述 法能 正常 行为
在线阅读 下载PDF
支持向量数据描述用于机械设备状态评估研究 被引量:22
11
作者 李凌均 韩捷 +2 位作者 郝伟 董辛 何正嘉 《机械科学与技术》 CSCD 北大核心 2005年第12期1426-1429,共4页
本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从... 本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从而为设备管理和预知维修提供科学的决策依据。将该方法应用于某炼油厂关键设备的运行状态评估中,及时、正确地评价出设备状态异常,为成功诊断出螺栓裂纹的早期故障提供帮助。 展开更多
关键词 支持向量数据描述 单值分类 状态监测 故障诊断
在线阅读 下载PDF
支持向量数据描述在西北暴雨预报中的应用试验 被引量:18
12
作者 燕东渭 孙田文 +2 位作者 杨艳 方建刚 刘志镜 《应用气象学报》 CSCD 北大核心 2007年第5期676-681,共6页
传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类... 传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类(多数类)的平庸的分类器。支持向量数据描述是从支持向量机(SVM)发展而来的基于核的机器学习方法,只使用一类样本就可以工作,适合于不平衡类别。以铜川暴雨预测作为试验对象,对SVM和支持向量数据描述(SVDD)进行了对比试验。试验结果表明对于这个不平衡类别问题SVDD具有优势。 展开更多
关键词 机器学习 支持向量数据描述(SVDD) 支持向量机(SVM) 暴雨预测
在线阅读 下载PDF
基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究 被引量:25
13
作者 付文龙 周建中 +3 位作者 李超顺 肖汉 肖剑 朱文龙 《中国电机工程学报》 EI CSCD 北大核心 2014年第32期5788-5795,共8页
水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用... 水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用核变换将故障样本映射到高维特征空间,并采用SVDD提取不平衡故障样本域的边界支持向量样本,构建基于相对距离模糊阈值和KNN的决策规则,最终在此基础上建立机组故障诊断模型。用该模型对经过不平衡处理的国际标准测试数据样本进行测试实验,并与支持向量机(support vector machine,SVM)及目前应用较多的SVDD模型的分类结果进行对比,结果表明该模型可有效解决不平衡样本分类倾斜性问题。最后,将模型用于某水电厂机组振动故障诊断,取得了较高的诊断精度,证明了该方法的有效性。 展开更多
关键词 支持向量数据描述(SVDD) K近邻(KNN) 模糊阈值 不平衡 故障诊断
在线阅读 下载PDF
基于支持向量数据描述的机械故障诊断研究 被引量:56
14
作者 李凌均 张周锁 何正嘉 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第9期910-913,共4页
为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目... 为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目标样本.将这种方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态,且不需要对原始数据进行特征提取.实验结果表明,支持向量数据描述法与传统的神经网络方法相比,具有较好的分类能力和较高的计算效率. 展开更多
关键词 支持向量数据描述 单值分类 故障诊断
在线阅读 下载PDF
基于加权支持向量数据描述的遥感图像病害松树识别 被引量:28
15
作者 胡根生 张学敏 +1 位作者 梁栋 黄林生 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期258-263,287,共7页
利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相... 利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相应像素点的颜色特征,再通过提取加窗图像块的灰度共生矩阵得到中心像素点的纹理特征,然后利用权重系数为每类样本分别作加权支持向量数据描述,实现松树状态的多输出分类识别,其中权重系数是通过建立关于训练样本中心距离的权重函数所确定。与传统的人工、航空和卫星遥感识别方法不同,利用无人机平台和双光谱相机获取遥感图像,具有可操作性强、费用低廉等优势。试验结果表明,相比传统的支持向量机和支持向量数据描述算法,改进的加权支持向量数据描述多分类算法更能准确地进行病害松树识别。 展开更多
关键词 松材线虫病害 遥感图像 状态识别 加权支持向量数据描述 多分类
在线阅读 下载PDF
基于EMD和支持向量数据描述的故障智能诊断 被引量:13
16
作者 李强 王太勇 +1 位作者 王正英 黄毅 《中国机械工程》 EI CAS CSCD 北大核心 2008年第22期2718-2721,共4页
针对数据维数过高导致的支持向量数据描述的分类结果不理想的问题,提出了一种基于经验模式分解特征提取和支持向量数据描述的故障智能诊断方法,将提取实测信号经经验模式分解后的各基本模式分量的能量作为信号特征,进行支持向量数据描... 针对数据维数过高导致的支持向量数据描述的分类结果不理想的问题,提出了一种基于经验模式分解特征提取和支持向量数据描述的故障智能诊断方法,将提取实测信号经经验模式分解后的各基本模式分量的能量作为信号特征,进行支持向量数据描述分类器的训练和分类。滚动轴承故障智能诊断实例表明,该方法可以有效提取信号的故障特征,降低数据维数,提高单值分类在故障智能诊断中的准确性。 展开更多
关键词 支持向量数据描述 经验模式分解 单值分类 故障诊断
在线阅读 下载PDF
基于主元分析的支持向量数据描述机械故障诊断 被引量:18
17
作者 潘明清 周晓军 +1 位作者 吴瑞明 雷良育 《传感技术学报》 EI CAS CSCD 北大核心 2006年第1期128-131,共4页
针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据... 针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据前处理,提取振动信号的统计特征值,得到的主元特征指标输入到SVDD分类器进行训练和测试。试验结果表明,PCA对正常和故障样本有较大的区分度,SVDD分类器能很好的分辨出轴承正常和故障状态,并且对未知故障有良好的识别能力。 展开更多
关键词 故障诊断 特征提取 主元分析 支持向量数据描述 轴承
在线阅读 下载PDF
基于支持向量数据描述的分类方法研究 被引量:10
18
作者 李瑜 郑敏娟 程国建 《计算机工程》 CAS CSCD 北大核心 2009年第1期235-236,239,共3页
针对单类数据的分类问题,提出一种基于支持向量数据描述(SVDD)的分类算法。该算法利用SVDD获得包含单类数据的最小球形边界,通过该边界对未知样本数据进行分类,同时采用可行方向方法求解边界优化中的二次规划问题,并在UCI机器学习数据... 针对单类数据的分类问题,提出一种基于支持向量数据描述(SVDD)的分类算法。该算法利用SVDD获得包含单类数据的最小球形边界,通过该边界对未知样本数据进行分类,同时采用可行方向方法求解边界优化中的二次规划问题,并在UCI机器学习数据集上将该算法与LS-SVM算法进行比较。实验结果表明,该算法不仅获得了更高的分类准确率,而且具有较低的运行时间。 展开更多
关键词 支持向量数据描述 单类分类器 支持向量 可行方向
在线阅读 下载PDF
基于小波包分解和支持向量数据描述的故障诊断方法 被引量:14
19
作者 李自国 郝伟 李凌均 《机械强度》 EI CAS CSCD 北大核心 2007年第3期365-369,共5页
支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波... 支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波包分解特征提取和SVDD的故障诊断方法,用小波包分解技术提取信号各频带的能量作为信号特征,用SVDD方法进行分类。对滚动轴承故障诊断的仿真实验结果显示,该方法可有效处理复杂机械振动信号,提高故障诊断的准确性。 展开更多
关键词 支持向量数据描述 故障诊断 小波包分解
在线阅读 下载PDF
结合邻域聚类分割的高光谱图像异常检测支持向量数据描述方法 被引量:6
20
作者 谌德荣 张立燕 +1 位作者 陶鹏 曹旭平 《宇航学报》 EI CAS CSCD 北大核心 2007年第3期767-771,共5页
支持向量数据描述方法在高光谱图像小异常目标检测中具有较好的检测性能,但是待检异常的几何形状受到约束和背景的选择具有盲目性影响检测效果,且检测需要对整幅图像进行遍历导致计算量大。提出邻域聚类分割和支持向量数据描述相结合的... 支持向量数据描述方法在高光谱图像小异常目标检测中具有较好的检测性能,但是待检异常的几何形状受到约束和背景的选择具有盲目性影响检测效果,且检测需要对整幅图像进行遍历导致计算量大。提出邻域聚类分割和支持向量数据描述相结合的异常检测方法,首先利用邻域聚类方法分割图像,将几何尺寸小的分割块作为潜在异常目标;其次选择与潜在异常的形状和大小相适应的背景窗进行背景像元收集;最后采用SVDD方法从潜在异常中快速且准确地检测出异常目标。对HYMAP图像的实验结果表明,该算法提高了复杂地物背景下异常的检测性能,降低了SVDD用于高光谱图像异常检测的计算量。 展开更多
关键词 高光谱图像 异常检测 支持向量数据描述 邻域聚类分割
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部