严寒地区冰雪飞溅问题对高速铁路运营安全性有直接影响,现场调研发现多处冰块脱落击打应答器的现象,而国内外对此研究尚未见文献报道。采用基于离散元-多柔性体动力学-计算流体力学(discrete element method-multi flexible body dynami...严寒地区冰雪飞溅问题对高速铁路运营安全性有直接影响,现场调研发现多处冰块脱落击打应答器的现象,而国内外对此研究尚未见文献报道。采用基于离散元-多柔性体动力学-计算流体力学(discrete element method-multi flexible body dynamics-computational fluid dynamics, DEM-MFBD-CFD)耦合分析法,建立车厢底板结冰脱落击打应答器模型,并借助风洞和现场试验结果,验证了模型的可靠性;基于建立的分析模型研究不同列车速度、风压变化、冰块质量等因素对应答器击打的受力影响。结果表明:应答器受到的最大应力随列车运行速度呈现幂函数增长关系,当行车速度增大到350 km/h时,最大应力达15.591 MPa,约为150 km/h时的3.5倍;且随冰块质量增加应答器最大应力呈现先迅速增加后缓慢增长趋势;当横风风速为5~20 m/s作用时,应答器表面所受到的最大应力相差不大,表明横风对冰雪击打应答器作用可忽略不计;为减小冰雪飞溅击打应答器危害,可采取除融雪手段、列车降速等措施。展开更多
The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexi...The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise,respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.展开更多
基金Project(2011BAE22B05)supported by the 12th Five-year National Key Projects of Science and Technology Support Plan,China
文摘The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise,respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.