为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复...为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。展开更多
可见光热红外(RGB and Thermal infrared,RGBT)跟踪是一种结合了可见光和热红外光两种不同传感器信息的多模态目标跟踪方法 .这种方法旨在克服单一传感器在特定环境下的局限性,通过融合多种传感器的数据来提高目标跟踪的鲁棒性和准确性...可见光热红外(RGB and Thermal infrared,RGBT)跟踪是一种结合了可见光和热红外光两种不同传感器信息的多模态目标跟踪方法 .这种方法旨在克服单一传感器在特定环境下的局限性,通过融合多种传感器的数据来提高目标跟踪的鲁棒性和准确性.然而,在现有的RGBT跟踪算法中,大多将可见光与热红外图像提取的特征直接进行融合,忽略了两种模态间的同质性与异质性.此外,RGBT跟踪还经常受到目标快速运动、尺度变化、光照变化、热交叉和遮挡等多种挑战因素的影响,现有工作往往是通过研究单一结构来同时解决所有问题,但这需要足够复杂的模型和足够多的训练数据.本文提出了一种新的面向不同挑战并结合多模态同异质信息分离与融合的网络,用于RGBT跟踪.在该网络的每层主干中都设计了一个挑战感知模块用于融合每种挑战下来自可见光与热红外两种不同模态的特征,并自适应地聚合所有挑战下的融合特征.此外,还加入了注意力增强模块及多尺度辅助模块对主干网络所提取的特征进行增强.最后根据可见光与热红外的同质性与异质性,分别提取它们的特有特征与共有特征并进行自适应融合.在GTOT、RGBT234和LasHeR数据集上的大量实验表明,与现有RGBT跟踪方法相比,本文提出的跟踪器显示出非常强的竞争力.展开更多
文摘为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。
文摘可见光热红外(RGB and Thermal infrared,RGBT)跟踪是一种结合了可见光和热红外光两种不同传感器信息的多模态目标跟踪方法 .这种方法旨在克服单一传感器在特定环境下的局限性,通过融合多种传感器的数据来提高目标跟踪的鲁棒性和准确性.然而,在现有的RGBT跟踪算法中,大多将可见光与热红外图像提取的特征直接进行融合,忽略了两种模态间的同质性与异质性.此外,RGBT跟踪还经常受到目标快速运动、尺度变化、光照变化、热交叉和遮挡等多种挑战因素的影响,现有工作往往是通过研究单一结构来同时解决所有问题,但这需要足够复杂的模型和足够多的训练数据.本文提出了一种新的面向不同挑战并结合多模态同异质信息分离与融合的网络,用于RGBT跟踪.在该网络的每层主干中都设计了一个挑战感知模块用于融合每种挑战下来自可见光与热红外两种不同模态的特征,并自适应地聚合所有挑战下的融合特征.此外,还加入了注意力增强模块及多尺度辅助模块对主干网络所提取的特征进行增强.最后根据可见光与热红外的同质性与异质性,分别提取它们的特有特征与共有特征并进行自适应融合.在GTOT、RGBT234和LasHeR数据集上的大量实验表明,与现有RGBT跟踪方法相比,本文提出的跟踪器显示出非常强的竞争力.