期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
融合多方位注意力信息聚合与网络剪枝的链式绝缘子检测方法
1
作者 汤永恒 孙水发 李旭琛 《高压电器》 北大核心 2025年第10期168-178,共11页
电力无人机巡检图像中复杂的背景、异物的遮挡以及多种天气下的光照影响使得绝缘子的准确识别仍是一个具有挑战性的任务。同时,现有的绝缘子检测算法不能有效表征多姿态和大长宽比的绝缘子串目标且算法参数量过大。因此,文中提出一种融... 电力无人机巡检图像中复杂的背景、异物的遮挡以及多种天气下的光照影响使得绝缘子的准确识别仍是一个具有挑战性的任务。同时,现有的绝缘子检测算法不能有效表征多姿态和大长宽比的绝缘子串目标且算法参数量过大。因此,文中提出一种融合多方位注意力信息聚合与网络剪枝的链式绝缘子检测方法来检测复杂背景下的绝缘子目标。首先,该方法采用点—链式结构有效表征了多姿态的绝缘子串目标;其次,网络模型使用Drn-c42骨干网络从无人机巡检图像中提取绝缘子串图像特征;然后,通过多方位注意力聚合网络对图像进行特征细化并使网络模型以局部—全局—局部的方式更加关注于绝缘子目标的特征信息;此外,在兼顾模型性能的前提下为降低模型的复杂度,选定了合适的位置进行网络剪枝使得网络模型更加轻量化。在构建的绝缘子检测数据集上的实验结果表明,文中所提方法能有效检测绝缘子的位置和排列方向,也可以很容易扩展到其他工业领域链状目标检测任务中。 展开更多
关键词 绝缘子检测 链状目标 多方位注意力信息聚合 网络剪枝
在线阅读 下载PDF
基于双层图注意力网络的邻域信息聚合实体对齐方法 被引量:4
2
作者 王键霖 张浩 +3 位作者 张永爽 马超伟 齐珂 张小艾 《计算机应用研究》 CSCD 北大核心 2024年第6期1686-1692,共7页
针对知识图谱中存在部分属性信息对实体对齐任务影响程度不一致以及实体的邻域信息重要程度不一致的问题,提出了一种结合双层图注意力网络的邻域信息聚合实体对齐(two-layer graph attention network entity alignment,TGAEA)方法。该... 针对知识图谱中存在部分属性信息对实体对齐任务影响程度不一致以及实体的邻域信息重要程度不一致的问题,提出了一种结合双层图注意力网络的邻域信息聚合实体对齐(two-layer graph attention network entity alignment,TGAEA)方法。该方法采用双层图神经网络,首先利用第一层网络对实体属性进行注意力系数计算,降低无用属性对实体对齐的影响;随后,结合第二层网络对实体名称、关系和结构等信息进行特征加权,以区分实体邻域信息的重要性;最后,借助自举方法扩充种子实体对,并结合邻域信息相似度矩阵进行实体距离度量。实验表明,在DWY100K数据集上,TGAEA模型相较于当前基线模型,hit@1、hit@10和MRR指标分别提升了4.18%、4.81%和5%,证明了双层图注意力网络在邻域信息聚合实体对齐方面的显著效果。 展开更多
关键词 知识图谱 实体对齐 注意力网络 属性信息 邻域信息聚合
在线阅读 下载PDF
基于多路信息聚合协同解码的单通道语音增强 被引量:1
3
作者 莫尚斌 王文君 +2 位作者 董凌 高盛祥 余正涛 《计算机应用》 CSCD 北大核心 2024年第8期2611-2617,共7页
为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复... 为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。 展开更多
关键词 声学特征 多路信息聚合 双路编码器 三路信息聚合解码器 通道-时频注意力机制
在线阅读 下载PDF
基于区域信息聚合的轻量化人群计数方法
4
作者 席志国 刘光辉 《高技术通讯》 CAS 北大核心 2024年第9期945-959,共15页
针对高密人群图像中细节信息丢失、背景噪声易与人群特征混淆以及网络模型复杂度高等问题,本文提出一种基于区域信息聚合的轻量化人群计数方法。首先,为获取高密图像中细粒度化的多尺度特征,设计了基于通道激活的多尺度特征提取模块,此... 针对高密人群图像中细节信息丢失、背景噪声易与人群特征混淆以及网络模型复杂度高等问题,本文提出一种基于区域信息聚合的轻量化人群计数方法。首先,为获取高密图像中细粒度化的多尺度特征,设计了基于通道激活的多尺度特征提取模块,此模块通过引入Ghost卷积构建了层间分级类残差连接结构,同时对每级特征辅以通道激活,以轻量化的方式实现了网络感受野的逐级扩张。其次,提出一种自注意力区域信息聚合模块获取不同尺度区域的特征信息,该模块通过轻量级自注意力机制分别从通道和空间维度集成区域信息,增强对人群特征的关注,从而弱化背景噪声对计数的影响。最后,考虑到原始计数损失收敛过程中的不稳定性,在DM-Count损失的基础上引入一种新型计数损失,提高了模型稳定性和计数敏感性,进一步提升了计数性能。在Shanghai Tech、UCFQNRF、JHU-CROWD++以及NWPU-Crowd这4个公开数据集的实验结果表明,本文所提方法对比其他主流轻量级人群计数方法有一定的提升,且模型参数量保持在较低水平。 展开更多
关键词 人群计数 区域信息聚合 轻量化 注意力 损失函数
在线阅读 下载PDF
面向不同挑战及同异质信息分离的RGBT跟踪
5
作者 方鑫 陈柘 +2 位作者 刘占文 李小鹏 宿雨心 《电子学报》 北大核心 2025年第3期910-925,共16页
可见光热红外(RGB and Thermal infrared,RGBT)跟踪是一种结合了可见光和热红外光两种不同传感器信息的多模态目标跟踪方法 .这种方法旨在克服单一传感器在特定环境下的局限性,通过融合多种传感器的数据来提高目标跟踪的鲁棒性和准确性... 可见光热红外(RGB and Thermal infrared,RGBT)跟踪是一种结合了可见光和热红外光两种不同传感器信息的多模态目标跟踪方法 .这种方法旨在克服单一传感器在特定环境下的局限性,通过融合多种传感器的数据来提高目标跟踪的鲁棒性和准确性.然而,在现有的RGBT跟踪算法中,大多将可见光与热红外图像提取的特征直接进行融合,忽略了两种模态间的同质性与异质性.此外,RGBT跟踪还经常受到目标快速运动、尺度变化、光照变化、热交叉和遮挡等多种挑战因素的影响,现有工作往往是通过研究单一结构来同时解决所有问题,但这需要足够复杂的模型和足够多的训练数据.本文提出了一种新的面向不同挑战并结合多模态同异质信息分离与融合的网络,用于RGBT跟踪.在该网络的每层主干中都设计了一个挑战感知模块用于融合每种挑战下来自可见光与热红外两种不同模态的特征,并自适应地聚合所有挑战下的融合特征.此外,还加入了注意力增强模块及多尺度辅助模块对主干网络所提取的特征进行增强.最后根据可见光与热红外的同质性与异质性,分别提取它们的特有特征与共有特征并进行自适应融合.在GTOT、RGBT234和LasHeR数据集上的大量实验表明,与现有RGBT跟踪方法相比,本文提出的跟踪器显示出非常强的竞争力. 展开更多
关键词 RGBT跟踪 挑战感知 同异质信息分离 自适应聚合 注意力机制 多尺度特征
在线阅读 下载PDF
一种并行混合注意力的渐进融合图像增强方法 被引量:7
6
作者 刘光辉 杨琦 +2 位作者 孟月波 赵敏华 杨华 《光电工程》 CAS CSCD 北大核心 2023年第4期47-59,共13页
针对低照度图像增强过程中出现的色彩失真、噪声放大和细节信息丢失等问题,提出一种并行混合注意力的渐进融合图像增强方法 (progressive fusion of parallel hybrid attention,PFA)。首先,设计多尺度加权聚合网络(multiscale weighted ... 针对低照度图像增强过程中出现的色彩失真、噪声放大和细节信息丢失等问题,提出一种并行混合注意力的渐进融合图像增强方法 (progressive fusion of parallel hybrid attention,PFA)。首先,设计多尺度加权聚合网络(multiscale weighted aggregation,MWA),通过聚合不同感受野下学习到的多尺度特征,促进局部特征的全域化表征,加强原始图像细节信息的保留;其次,提出并行混合注意力结构(parallel hybrid attention module,PHA),利用像素注意力和通道注意力并联组合排列,缓解不同分支注意力分布滞后造成的颜色差异,通过相邻注意力间的信息相互补充有效提高图像的色彩表现力并弱化噪声;最后,设计渐进特征融合模块(progressive feature fusion module,PFM),在三个阶段由粗及细对前阶段输入特征进行再处理,补充因网络深度增加造成的浅层特征流失,避免因单阶段特征堆叠导致的信息冗余。LOL、DICM、MEF和LIME数据集上的实验结果表明,本文方法在多个评价指标上的表现均优于对比方法。 展开更多
关键词 图像增强 多尺度加权聚合 并行混合注意力 渐进融合 信息冗余
在线阅读 下载PDF
基于注意力的轻量级工业产品缺陷检测网络 被引量:5
7
作者 李刚 邵瑞 +2 位作者 周鸣乐 李敏 万洪林 《计算机工程》 CAS CSCD 北大核心 2023年第11期275-283,共9页
工业领域的表面缺陷检测对提高工业产品质量、维护生产安全具有重要意义。因工业产品表面缺陷复杂多样、形状各异、缺陷检测场景和硬件配置不同,对工业产品的表面缺陷检测提出更高要求。基于图像的工业产品表面缺陷检测方法难以兼顾实... 工业领域的表面缺陷检测对提高工业产品质量、维护生产安全具有重要意义。因工业产品表面缺陷复杂多样、形状各异、缺陷检测场景和硬件配置不同,对工业产品的表面缺陷检测提出更高要求。基于图像的工业产品表面缺陷检测方法难以兼顾实时性和准确性的要求。为满足工业产品缺陷检测快速准确的需求,提出一种轻量级的缺陷检测网络。该网络由主干网络、多尺度特征聚合网络、残差增强网络和注意力增强网络4部分组成。其中,主干网络将通道注意力层和坐标注意力层嵌入到特征提取部分,以获取丰富的表面缺陷特征信息,多尺度特征聚合网络则融合深层语义和浅层语义特征信息,残差增强网络关注空间信息,注意力增强网络利用全局特征与局部特征的信息交互,在满足低硬件配置的同时增强模型对复杂多样缺陷的检测性能。实验结果表明,该网络在NRSD-MN、NEU-DET和PCBData等公开数据集上的精准度、召回率、F1值、mAP@0.5和GFLOPS这5项指标上优于YOLOv3-tiny、YOLOv5s、YOLOv7-tiny等同参数量级算法,能有效兼顾工业产品表面缺陷检测场景下实时性和准确性的要求。 展开更多
关键词 表面缺陷检测 注意力机制 轻量级网络 多尺度特征聚合 信息交互
在线阅读 下载PDF
用于多器官分割的多尺度聚合网络研究
8
作者 高学敏 杜晓刚 +2 位作者 张学军 王营博 雷涛 《陕西科技大学学报》 北大核心 2024年第2期189-197,共9页
多器官分割在病理分析、手术方案制定以及临床诊断上都具有重要的应用价值.但是,一些器官形变较大、尺寸较小且组织边缘模糊,导致分割效果较差.为了解决该问题,提出了一种用于多器官分割的多尺度聚合网络(MSANet).MSANet有两个优势:首先... 多器官分割在病理分析、手术方案制定以及临床诊断上都具有重要的应用价值.但是,一些器官形变较大、尺寸较小且组织边缘模糊,导致分割效果较差.为了解决该问题,提出了一种用于多器官分割的多尺度聚合网络(MSANet).MSANet有两个优势:首先,设计了多尺度边界提取模块,使用多尺度卷积核提取多个特征图,将不同尺度的特征图互相结合,从而聚合全局上下文信息,并提取不同器官的边界和细节信息;其次,设计了聚焦式注意力模块,通过学习的注意力权重来调节特征图的重要性,从而聚焦感兴趣的多器官区域并捕捉不同器官的关键特征,进一步提高分割性能.在两个公开数据集CHAOS和MS-CMRSeg上进行了大量实验.实验结果表明:MSANet在两个数据集上的分割效果均优于当前主流的多器官分割方法,显著提高了多器官分割精度. 展开更多
关键词 多器官分割 多尺度聚合网络 上下文信息 注意力机制
在线阅读 下载PDF
一种基于改进YOLOv7的相机标定特征点检测方法 被引量:3
9
作者 陈松 闫国闯 +2 位作者 马方远 王西泉 田晓耕 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期151-160,共10页
在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象... 在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象,针对受干扰(模糊、重噪声、极端姿态和大镜头失真)的标定图像难以进行特征点提取的问题,提出一种融合改进YOLOv7-tiny深度学习网络和Harris角点检测的相机标定特征点检测算法。针对原始网络在相机标定特征区域检测中的各种问题,引入Gather-and-Distribute信息聚合分发机制替换YOLOv7-tiny的加强特征提取网络(FPN)部分,提高不同层之间特征融合的能力;在主干特征提取部分后加入Biformer注意力机制,提高对小尺寸特征点候选区域的捕捉能力;在Head部分使用改进Efficient Decoupled Head解耦头,在提高精度的同时维持了较低的计算开销。测试结果表明,改进后的YOLOv7-tiny网络对特征点候选区域检测的准确率有显著的提高,达到95.3%,证明了改进后网络的有效性和可行性。 展开更多
关键词 相机标定 深度学习 YOLOv7-tiny 信息聚合分发机制 注意力机制 HARRIS算法
在线阅读 下载PDF
特征融合的装修案例跨模态检索方法
10
作者 亢洁 刘威 《智能系统学报》 CSCD 北大核心 2024年第2期429-437,共9页
目前家装客服系统中主要依靠人工方式进行装修案例检索,导致该系统不能满足用户对咨询服务快捷、及时的需求而且人力成本高,故提出一种基于特征融合的装修案例跨模态检索算法。针对多模态数据的语义信息挖掘不充分,模型检索精度低等问题... 目前家装客服系统中主要依靠人工方式进行装修案例检索,导致该系统不能满足用户对咨询服务快捷、及时的需求而且人力成本高,故提出一种基于特征融合的装修案例跨模态检索算法。针对多模态数据的语义信息挖掘不充分,模型检索精度低等问题,对现有的风格聚合模块进行改进,在原始模块中引入通道注意力机制,以此来为每组装修案例中不同图片的特征向量添加合适的权重,从而增强包含更多有用信息的重要特征并削弱其他不重要的特征。同时,为充分利用多模态信息,设计一种适用于检索场景下的多模态特征融合模块,该模块能够自适应地控制2种不同模态的特征向量进行一系列的融合操作,以实现跨模态数据间的知识流动与共享,从而生成语义更丰富、表达能力更强的特征向量,进一步提升模型的检索性能。在自建的装修案例多模态数据集上将该方法与其他方法进行比较,试验结果表明本文方法在装修案例检索上具有更优越的性能。 展开更多
关键词 家装客服系统 装修案例检索 跨模态检索 风格聚合 多模态 特征融合 通道注意力机制 语义信息
在线阅读 下载PDF
基于MIC和MA-LSTNet的超短期电力负荷预测模型 被引量:1
11
作者 龚钢军 蔡贺 +1 位作者 杨佳轩 何建军 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-12,共12页
在多元时序超短期电力负荷预测中,各变量之间往往存在长期和短期两种时间模式,而长短期时间序列网络(LSTNet)可以提取天气因素与负荷之间的短期变化和长期趋势,提高了预测的精度。本文建立了基于最大信息系数(MIC)和采用多头注意力机制... 在多元时序超短期电力负荷预测中,各变量之间往往存在长期和短期两种时间模式,而长短期时间序列网络(LSTNet)可以提取天气因素与负荷之间的短期变化和长期趋势,提高了预测的精度。本文建立了基于最大信息系数(MIC)和采用多头注意力机制的长短期时间序列网络(MA-LSTNet)的超短期负荷预测模型。首先,利用最大信息系数分析天气变量在各负荷滞后时段与预测序列的相关性,使用符号聚合近似(SAX)量化相关性曲线,对天气变量进行最优选择,减少模型输入冗余;其次,对长短期时间序列网络进行了改进,提出了采用多头注意力机制的长短期时间序列网络,通过在非线性部分加入自注意力层,实现了对于非季节性、非周期性的长短期时间模式的提取。截至目前与其它模型相比,本文提出的模型具有最佳的预测性能。 展开更多
关键词 长短期模式 最大信息系数 循环跳过层 注意力机制 符号聚合近似
在线阅读 下载PDF
基于改进Fi-GNN模型的点击率预测方法
12
作者 夏义春 李汪根 +2 位作者 李豆豆 高坤 束阳 《计算机工程与设计》 北大核心 2024年第6期1720-1727,共8页
为解决基线模型(Fi-GNN)特征交互模块设计不合理的问题,提出一种基于改进Fi-GNN模型的点击率预测方法(Fi-GNN-V2)。针对特征交互模块的邻接矩阵没有考虑到异构节点间的多元关系,在计算异构节点间相互作用的权重时增加边类型的嵌入向量,... 为解决基线模型(Fi-GNN)特征交互模块设计不合理的问题,提出一种基于改进Fi-GNN模型的点击率预测方法(Fi-GNN-V2)。针对特征交互模块的邻接矩阵没有考虑到异构节点间的多元关系,在计算异构节点间相互作用的权重时增加边类型的嵌入向量,得到更合理的邻接矩阵;通过多头聚合多个子空间的邻居信息学习不同方式的特征交互;融合二阶以及三阶特征组合解决特征交互模块造成特征域的语义信息丢失问题,设计注意力模块抑制无用特征组合对模型学习的干扰;为进一步提升模型的性能,结合深度神经网络隐式捕捉高阶非线性的特征组合进行联合预测。实验结果表明,该方法优于其它主流点击率预测模型。 展开更多
关键词 点击率预测 邻接矩阵 异构节点 多空间聚合 语义信息 注意力模块 深度神经网络
在线阅读 下载PDF
基于DDPG的三维重建模糊概率点推理 被引量:10
13
作者 李雷 徐浩 吴素萍 《自动化学报》 EI CAS CSCD 北大核心 2022年第4期1105-1118,共14页
单视图物体三维重建是一个长期存在的具有挑战性的问题.为了解决具有复杂拓扑结构的物体以及一些高保真度的表面细节信息仍然难以准确进行恢复的问题,本文提出了一种基于深度强化学习算法深度确定性策略梯度(Deep deterministic policy ... 单视图物体三维重建是一个长期存在的具有挑战性的问题.为了解决具有复杂拓扑结构的物体以及一些高保真度的表面细节信息仍然难以准确进行恢复的问题,本文提出了一种基于深度强化学习算法深度确定性策略梯度(Deep deterministic policy gradient,DDPG)的方法对三维重建中模糊概率点进行再推理,实现了具有高保真和丰富细节的单视图三维重建.本文的方法是端到端的,包括以下四个部分:拟合物体三维形状的动态分支代偿网络的学习过程,聚合模糊概率点周围点的邻域路由机制,注意力机制引导的信息聚合和基于深度强化学习算法的模糊概率调整.本文在公开的大规模三维形状数据集上进行了大量的实验证明了本文方法的正确性和有效性.本文提出的方法结合了强化学习和深度学习,聚合了模糊概率点周围的局部信息和图像全局信息,从而有效地提升了模型对复杂拓扑结构和高保真度的细节信息的重建能力. 展开更多
关键词 三维重建 强化学习 深度学习 注意力机制 信息聚合
在线阅读 下载PDF
图神经网络在冷启动推荐中的实现 被引量:5
14
作者 高巍 朱风兰 +2 位作者 李大舟 周河晓 陈思思 《计算机工程与设计》 北大核心 2022年第9期2557-2566,共10页
针对在互联网金融产业发展过程中,推荐系统因数据稀疏性带来的用户冷启动和项目冷启动问题,提出一种同构属性特点的图神经网络的冷启动推荐模型。提出一种构造用户属性和项目属性的信息图方法;提出一种改进的变分图自编码器,解决偏好重... 针对在互联网金融产业发展过程中,推荐系统因数据稀疏性带来的用户冷启动和项目冷启动问题,提出一种同构属性特点的图神经网络的冷启动推荐模型。提出一种构造用户属性和项目属性的信息图方法;提出一种改进的变分图自编码器,解决偏好重构嵌入问题;使用门控注意力聚合器,解决聚合邻域中不同模态的多属性问题。通过真实的京东数据集,与经典模型相比较,该模型在MSE值、RMSE值和MAE值至少降低了4.05%、2.02%和2.53%,验证了模型在解决推荐系统冷启动问题方面的有效性。 展开更多
关键词 推荐系统 图神经网络 冷启动推荐 信息 门控注意力聚合
在线阅读 下载PDF
基于共现流增强双向金字塔卷积网络的密集液滴识别
15
作者 朱凌 王雅萍 廖丽敏 《计算机工程》 CAS CSCD 北大核心 2022年第7期241-246,253,共7页
基于深度学习的数字聚合酶链式反应(PCR)液滴识别对PCR图像中的目标进行高阶语义建模,能够减少人工参与特征设计和筛选带来的误差,但忽略了目标的低层物理结构和几何外观细节信息,且在特征建模的过程中重复使用了大量冗余信息,对特征的... 基于深度学习的数字聚合酶链式反应(PCR)液滴识别对PCR图像中的目标进行高阶语义建模,能够减少人工参与特征设计和筛选带来的误差,但忽略了目标的低层物理结构和几何外观细节信息,且在特征建模的过程中重复使用了大量冗余信息,对特征的表征能力有待改善。提出一种共现流增强双向金字塔卷积网络(CoFBiPCN)框架用于PCR液滴识别和统计。为增强金字塔的内部和层间相关性,设计具有时空分支的双向金字塔卷积网络,从正反2个方向对金字塔卷积网络得到的多尺度特征进行聚合,模拟PCR图像中液滴的上下文语义以及不同层级的细节信息,以捕获液滴的物理外观等低层信息。同时,设计切片的共现注意力(SCo-AN)模块,将不同尺度的高低层信息在不同的切片子空间中进行共享聚合,并交叉传递到不同分支的BiPCN中,强化高低层特征信息的交互和依赖关系,进一步增强信息流对PCR图像上液滴的表征,实现低层和高阶信息流的共享与交叉聚合。实验结果表明,CoF-BiPCN具备良好的识别性能,准确率和平均精度均值分别达到84.74%和45.09%,与Cascade RCNN模型相比分别提高4.3和3.12个百分点。 展开更多
关键词 数字聚合酶链式反应液滴识别 金字塔卷积网络 多尺度信息 共现注意力 层间相关性 交叉聚合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部