为克服现代大规模电力系统分析的"维数灾"及电力电子元件难以用精确数学模型分析的问题,引入多信号到基于奇异值–总体最小二乘法的改进Prony算法中。在小波变换消噪和滤波的基础上,建立多信号的样本函数矩阵来提高辨识的准确...为克服现代大规模电力系统分析的"维数灾"及电力电子元件难以用精确数学模型分析的问题,引入多信号到基于奇异值–总体最小二乘法的改进Prony算法中。在小波变换消噪和滤波的基础上,建立多信号的样本函数矩阵来提高辨识的准确性,在多信号的样本函数矩阵的基础上辨识振荡特征,并将计算结果应用到传递函数辨识中,然后依据辨识传递函数采用极点配置法进行电力系统稳定器(power system stabilizer,PSS)设计。IEEE4机11节点系统验证了多信号改进算法对于信号特征和传递函数辨识结果的正确性和全面性,PSS加入实际仿真系统的效果说明了利用改进算法设计出的PSS效果优于利用传统线性化数学模型设计的PSS。展开更多
针对现有环境感知技术在毫米波通信信号带宽受限条件下的性能表现尚未得到充分研究,且在复杂场景下存在计算复杂度高、实时性不足等问题,提出一种基于有限带宽毫米波通信信号的主动式环境地图构建算法,旨在实现环境地图的实时构建,从而...针对现有环境感知技术在毫米波通信信号带宽受限条件下的性能表现尚未得到充分研究,且在复杂场景下存在计算复杂度高、实时性不足等问题,提出一种基于有限带宽毫米波通信信号的主动式环境地图构建算法,旨在实现环境地图的实时构建,从而提升通信系统的性能.首先,通过在移动端主动式自发自收毫米波通信信号,并获取回波的传播时延和角度信息,结合移动端姿态信息初步感知障碍物的坐标;其次,考虑毫米波通信信号有限带宽对地图分辨率的影响,采用栅格地图算法表征障碍物的空间位置,基于Bresenham算法计算空闲栅格,进而快速准确地构建环境地图,并通过设置不同的地图分辨率,进行了仿真实验,以分析不同地图分辨率条件下的地图构建结果;再次,统计并拟合了感知环境中到达角(Angle Of Arrival,AOA)的分布,以验证冯米塞斯(von Mises)分布的合理性;最后,将结果与基于激光雷达的基准地图进行对比,使用均方根误差(Root Mean Square Error,RMSE)验证精度,使用Jaccard相似度分析验证障碍物形状,并结合代码运行时长评估了算法的效率和系统性能.研究结果表明:所提算法在3GHz带宽和25格/米分辨率下,地图构建达到最优性能,其中RMSE为9.2943,Jaccard系数为0.6254,代码运行时长为14.7746 min,能够满足实时环境感知的需求;与500 MHz带宽和25格/米分辨率下的地图构建结果相比,RMSE、Jaccard系数、代码运行时长分别提升了56.1%、394.4%、70.6%.研究结果可以为未来高动态通信系统发展提供参考.展开更多
文摘为克服现代大规模电力系统分析的"维数灾"及电力电子元件难以用精确数学模型分析的问题,引入多信号到基于奇异值–总体最小二乘法的改进Prony算法中。在小波变换消噪和滤波的基础上,建立多信号的样本函数矩阵来提高辨识的准确性,在多信号的样本函数矩阵的基础上辨识振荡特征,并将计算结果应用到传递函数辨识中,然后依据辨识传递函数采用极点配置法进行电力系统稳定器(power system stabilizer,PSS)设计。IEEE4机11节点系统验证了多信号改进算法对于信号特征和传递函数辨识结果的正确性和全面性,PSS加入实际仿真系统的效果说明了利用改进算法设计出的PSS效果优于利用传统线性化数学模型设计的PSS。
文摘针对现有环境感知技术在毫米波通信信号带宽受限条件下的性能表现尚未得到充分研究,且在复杂场景下存在计算复杂度高、实时性不足等问题,提出一种基于有限带宽毫米波通信信号的主动式环境地图构建算法,旨在实现环境地图的实时构建,从而提升通信系统的性能.首先,通过在移动端主动式自发自收毫米波通信信号,并获取回波的传播时延和角度信息,结合移动端姿态信息初步感知障碍物的坐标;其次,考虑毫米波通信信号有限带宽对地图分辨率的影响,采用栅格地图算法表征障碍物的空间位置,基于Bresenham算法计算空闲栅格,进而快速准确地构建环境地图,并通过设置不同的地图分辨率,进行了仿真实验,以分析不同地图分辨率条件下的地图构建结果;再次,统计并拟合了感知环境中到达角(Angle Of Arrival,AOA)的分布,以验证冯米塞斯(von Mises)分布的合理性;最后,将结果与基于激光雷达的基准地图进行对比,使用均方根误差(Root Mean Square Error,RMSE)验证精度,使用Jaccard相似度分析验证障碍物形状,并结合代码运行时长评估了算法的效率和系统性能.研究结果表明:所提算法在3GHz带宽和25格/米分辨率下,地图构建达到最优性能,其中RMSE为9.2943,Jaccard系数为0.6254,代码运行时长为14.7746 min,能够满足实时环境感知的需求;与500 MHz带宽和25格/米分辨率下的地图构建结果相比,RMSE、Jaccard系数、代码运行时长分别提升了56.1%、394.4%、70.6%.研究结果可以为未来高动态通信系统发展提供参考.