针对传统高光谱图像分类算法存在特征信息利用率不足且无法有效降低特征图空间冗余的问题,提出一种改进的基于混合卷积的多尺度模型MH-CNN,该模型使用多尺度3DCNN模块对高光谱图像进行空间特征和光谱特征的初步提取,然后采用嵌入了空间...针对传统高光谱图像分类算法存在特征信息利用率不足且无法有效降低特征图空间冗余的问题,提出一种改进的基于混合卷积的多尺度模型MH-CNN,该模型使用多尺度3DCNN模块对高光谱图像进行空间特征和光谱特征的初步提取,然后采用嵌入了空间重建模块的多尺度2DCNN网络对特征图的深层空间特征做进一步的提取和优化,最后通过全连接层对高光谱遥感图像进行精准分类。实验在Indian Pines、Pavia Centre和Pavia University 3种开源数据集上进行,选取了7种经典的分类方法作为对比。MH-CNN算法在3个数据集上的总体精度分别达到了97.7%、99.2%和98.5%。实验结果表明,MH-CNN算法使得高光谱图像中的空谱特征都得到了充分的利用,同时有效减少了特征图的空间冗余,相比于其他模型提高了分类精度,具有较好的综合性能。展开更多
针对高光谱图像分类任务中小样本引起分类精度不高的问题,提出了一种基于动态图-谱特征提取的高光谱分类方法,提高全局建模和局部信息提取能力,实现跨域空间特征和光谱相似性特征的互补融合。首先,提出动态轴滑动建图策略,建立高效、有...针对高光谱图像分类任务中小样本引起分类精度不高的问题,提出了一种基于动态图-谱特征提取的高光谱分类方法,提高全局建模和局部信息提取能力,实现跨域空间特征和光谱相似性特征的互补融合。首先,提出动态轴滑动建图策略,建立高效、有代表性的图结构。其次,基于动态图结构设计动态图特征提取网络,采用特征卷积层、动态空间卷积模块和动态图卷积模块以捕捉局部特征并整合不同尺度的跨域空间特征。然后,区域-全局光谱特征网络通过多层光谱特征卷积模块,融合局部信息并跨层融合编码器,深入挖掘局部和全局光谱特征的序列属性。最后,交叉注意力建立动态关联以融合空间和光谱信息,完成分类。实验结果表明,该方法在Indian Pines、University of Pavia和Salinas三个高光谱数据集上取得了优于现有方法的分类性能,为处理高光谱图像复杂空间和光谱信息提供了一种有效的深度学习框架。展开更多
文摘针对传统高光谱图像分类算法存在特征信息利用率不足且无法有效降低特征图空间冗余的问题,提出一种改进的基于混合卷积的多尺度模型MH-CNN,该模型使用多尺度3DCNN模块对高光谱图像进行空间特征和光谱特征的初步提取,然后采用嵌入了空间重建模块的多尺度2DCNN网络对特征图的深层空间特征做进一步的提取和优化,最后通过全连接层对高光谱遥感图像进行精准分类。实验在Indian Pines、Pavia Centre和Pavia University 3种开源数据集上进行,选取了7种经典的分类方法作为对比。MH-CNN算法在3个数据集上的总体精度分别达到了97.7%、99.2%和98.5%。实验结果表明,MH-CNN算法使得高光谱图像中的空谱特征都得到了充分的利用,同时有效减少了特征图的空间冗余,相比于其他模型提高了分类精度,具有较好的综合性能。
文摘针对高光谱图像分类任务中小样本引起分类精度不高的问题,提出了一种基于动态图-谱特征提取的高光谱分类方法,提高全局建模和局部信息提取能力,实现跨域空间特征和光谱相似性特征的互补融合。首先,提出动态轴滑动建图策略,建立高效、有代表性的图结构。其次,基于动态图结构设计动态图特征提取网络,采用特征卷积层、动态空间卷积模块和动态图卷积模块以捕捉局部特征并整合不同尺度的跨域空间特征。然后,区域-全局光谱特征网络通过多层光谱特征卷积模块,融合局部信息并跨层融合编码器,深入挖掘局部和全局光谱特征的序列属性。最后,交叉注意力建立动态关联以融合空间和光谱信息,完成分类。实验结果表明,该方法在Indian Pines、University of Pavia和Salinas三个高光谱数据集上取得了优于现有方法的分类性能,为处理高光谱图像复杂空间和光谱信息提供了一种有效的深度学习框架。