期刊文献+
共找到364篇文章
< 1 2 19 >
每页显示 20 50 100
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
1
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
2
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测 被引量:24
3
作者 徐龙琴 李乾川 +1 位作者 刘双印 李道亮 《农业工程学报》 EI CAS CSCD 北大核心 2016年第3期202-209,共8页
针对单一预测模型预测养殖pH值精度低等问题,提出集合经验模态分解(ensemble empirical mode decomposition,EEMD)和改进人工蜂群算法(improve artificial bee colony,IABC)相结合的南美白对虾工厂化养殖pH值组合预测模型。在建模过程中... 针对单一预测模型预测养殖pH值精度低等问题,提出集合经验模态分解(ensemble empirical mode decomposition,EEMD)和改进人工蜂群算法(improve artificial bee colony,IABC)相结合的南美白对虾工厂化养殖pH值组合预测模型。在建模过程中,利用EEMD算法对原始pH值时间序列进行多尺度分解,得到一组平稳、互不耦合的子序列;根据各子序列变化特征选择适宜的单项预测方法并建模,通过改进人工蜂群(IABC)算法优化复杂非线性组合预测模型目标函数权重系数,构建了工厂化养殖pH值非线性组合预测模型。利用该模型对广东省湛江市2014年9月8日-2014年9月15日期间工厂化养殖pH值进行预测,结果表明,该预测模型取得了较好的预测效果,与模拟退火优化BP神经网络(simulated Annealing-BP neural network,SA-BPNN)和遗传算法优化最小二乘支持向量回归机(genetic algorithm-least square support vector regression,GA-LSSVR)对比分析,模型评价指标平均绝对百分比误差MAPE、均方根误差、平均绝对误差MAE和相关系数R2分别为0.0035、0.0274、0.0224和0.9923,均表明该文提出的组合预测模型具有更高预测精度,能够满足实际南美白对虾工厂化养殖pH值精细化管理需要,也为其他领域pH值预测提供参考。 展开更多
关键词 算法 pH值 水产养殖 组合预测 集合经验模态分解 人工蜂群算法 南美白对虾
在线阅读 下载PDF
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究 被引量:13
4
作者 杨磊 黄元生 +2 位作者 张向荣 董玉琳 高冲 《电力系统保护与控制》 EI CSCD 北大核心 2020年第10期81-90,共10页
准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算... 准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算法(Genetic Algorithm, GA)、广义回归神经网络(General Regression Neural Network, GRNN)和长短期记忆模型(Long Short-Term Memory,LSTM)的短期风速变权组合预测模型(Variable Weighted Hybrid Model, VWHM)。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,且在风速预测中具有优越性。 展开更多
关键词 短期风速预测 集合经验模态分解 套索算法 广义回归神经网络 长短期记忆 遗传算法
在线阅读 下载PDF
具有独立分量的经验模态分解算法研究 被引量:4
5
作者 李洪 郝豪豪 孙云莲 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第7期245-248,共4页
在经验模态分解算法中用极值包络平均近似局部平均,不能保证分解分量之间的正交性,固有模态分量存在冗余.这种情况对信号成份分析尤为不利,冗余部分的物理意义无法解释,或可能作出错误的解释.将独立分量分析方法引入经验模态分解算法中... 在经验模态分解算法中用极值包络平均近似局部平均,不能保证分解分量之间的正交性,固有模态分量存在冗余.这种情况对信号成份分析尤为不利,冗余部分的物理意义无法解释,或可能作出错误的解释.将独立分量分析方法引入经验模态分解算法中,利用其良好的分解独立特性,使模态分量不仅正交而且相互独立,消除了冗余.仿真试验表明,改进算法的模态分量彼此独立,特别对于混有突变信号的周期信号,在得到周期分量的同时,也得到突变分量,说明了改进算法比原算法优越,且具有较好的工程应用前景. 展开更多
关键词 经验模态分解 固有模态函数 独立分量分析 改进算法
在线阅读 下载PDF
利用复数经验模态分解抑制高频地波雷达射频干扰的工程应用
6
作者 谢岱玲 洪羽萌 +3 位作者 陈羽洁 叶彩云 谢飞 陈泽宗 《科学技术与工程》 北大核心 2015年第34期74-80,99,共8页
为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法... 为了抑制高频地波雷达(high frequency ground wave radar,HFGWR)射频干扰(radio frequency interference,RFI),提出了复数经验模态分解(CEMD)方法,在抑制射频干扰的同时,最大程度上保留有用信号。通过模拟及实测数据的验证分析,该方法在不损失有用信号的基础上有效抑制了射频干扰,且处理速度快,满足高频地波雷达实时工作要求。 展开更多
关键词 高频地波雷达 射频干扰 复数经验模态分解算法 有用信号 实测数据
在线阅读 下载PDF
基于经验模态分解算法的永磁直线同步电机迭代学习控制 被引量:15
7
作者 王丽梅 孙璐 初升 《电工技术学报》 EI CSCD 北大核心 2017年第6期164-171,共8页
在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法。首先设计闭环ILC控制器,然后利用EMD算... 在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法。首先设计闭环ILC控制器,然后利用EMD算法分解ILC过程中的跟踪误差,筛选并消除其中发散的分量,保证ILC的收敛性,提高ILC的收敛速度。仿真和实验结果表明,与传统ILC相比,所提出的控制方法能够使系统的跟踪效果更好,且保证了伺服系统的输出轨迹在较少的迭代次数下快速精确地收敛到期望轨迹。 展开更多
关键词 永磁直线同步电机 迭代学习控制 经验模态分解算法 跟踪误差
在线阅读 下载PDF
基于二维经验模态分解算法的织物疵点自动检测 被引量:4
8
作者 厉征鑫 刘基宏 +2 位作者 高卫东 潘如如 柴志雷 《纺织学报》 CAS CSCD 北大核心 2011年第7期49-53,共5页
为解决织物疵点检测工序中存在的耗时性问题,提出一种基于二维经验模态分解(EMD)的多方向自适应检测方法。通过Delaunay三角分割、径向基函数插值与二维三次样条插值等方法实现二维EMD算法,用该方法将织物灰度图像分解为一系列子图像,... 为解决织物疵点检测工序中存在的耗时性问题,提出一种基于二维经验模态分解(EMD)的多方向自适应检测方法。通过Delaunay三角分割、径向基函数插值与二维三次样条插值等方法实现二维EMD算法,用该方法将织物灰度图像分解为一系列子图像,选取包含疵点信息的子图像进行融合,最后通过阈值化来识别织物图像中的疵点。借助于工业线阵相机采集包含不同疵点的织物图像,并利用提出的方法进行自动检测。结果表明,子图像融合结果中疵点信息明显,与背景的反差强烈,通过阈值法可以直接判断出图像中是否包含疵点,并完成疵点定位,该方法对织物疵点的检测十分有效。 展开更多
关键词 二维经验模态分解算法 织物疵点 Delaunay三角分割 径向基函数 三次样条插值
在线阅读 下载PDF
基于有效数据的经验模态分解快速算法研究 被引量:7
9
作者 胡劲松 杨世锡 《振动.测试与诊断》 EI CSCD 2006年第2期119-121,共3页
在介绍了经验模态分解(简称EMD)方法的理论和算法基础上,为了提高EMD算法的速度,提出了基于有效数据的EMD快速算法,即通过EMD分解中止的计算区域限定于有效数据段来实现算法的提速。通过对非线性信号的实验研究表明,基于有效数据的EMD... 在介绍了经验模态分解(简称EMD)方法的理论和算法基础上,为了提高EMD算法的速度,提出了基于有效数据的EMD快速算法,即通过EMD分解中止的计算区域限定于有效数据段来实现算法的提速。通过对非线性信号的实验研究表明,基于有效数据的EMD快速算法不但能显著提高算法的速度,而且还可以提高算法的精度。该研究成果能广泛地用于信号时频分析领域。 展开更多
关键词 有效数据 经验模态分解 快速算法 时频分析
在线阅读 下载PDF
联合非降采样金字塔与经验模态分解的遥感图像融合算法 被引量:3
10
作者 王文波 李合龙 张晓东 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第11期1394-1398,共5页
为了更好地进行遥感图像融合,联合非降采样拉普拉斯金字塔变换(NLP)和二维经验模态分解(BEMD),提出了一种利用分解系数绝对值和瞬时频率作为融合特征的遥感图像融合新算法.首先利用非降采样金字塔对高分辨率全色图像(PAN)进行分解,使其... 为了更好地进行遥感图像融合,联合非降采样拉普拉斯金字塔变换(NLP)和二维经验模态分解(BEMD),提出了一种利用分解系数绝对值和瞬时频率作为融合特征的遥感图像融合新算法.首先利用非降采样金字塔对高分辨率全色图像(PAN)进行分解,使其低频部分和低分辨率全色图像(MS)具有相同的尺度特性;再对低频部分和MS图像进行BEMD分解,得到二维内蕴模态函数(bimf)和趋势图像,并计算各层bimf的4方向瞬时频率.为了尽可能提高空间细节质量,利用瞬时频率和分解系数绝对值作为融合特征,并考虑bimf部分对应位置系数的正负关系,采用加权算法对高频细节部分进行融合;最后进行相应的BEMD和NLP逆变换,得到融合图像.实验表明,该方法对融合影像的光谱质量和空间细节质量都有较好的改善. 展开更多
关键词 二维经验模态分解 非降采样金字塔 瞬时频率 遥感图像融合 融合算法 频率能量
在线阅读 下载PDF
经验模态分解中包络线算法 被引量:8
11
作者 朱赛 尚伟 《火力与指挥控制》 CSCD 北大核心 2012年第9期125-128,共4页
经验模态分解(EMD)是一种先进的信号处理方法,对非线性、非平稳信号具有独特的分析能力。它的包络线算法存在着过冲/欠冲和端点问题,影响信号分解质量。分析了过冲/欠冲和端点问题产生的原因,提出了采用保形分段3次插值方法作为EMD分解... 经验模态分解(EMD)是一种先进的信号处理方法,对非线性、非平稳信号具有独特的分析能力。它的包络线算法存在着过冲/欠冲和端点问题,影响信号分解质量。分析了过冲/欠冲和端点问题产生的原因,提出了采用保形分段3次插值方法作为EMD分解过程中的包络算法,解决了拟合包络线的过冲/欠冲问题;采用端点处包络线位置预测,对端点处的包络线位置加以约束,与极值点对称延拓的方法结合使用,充分利用信号本身信息,一定程度上抑制了端点问题。最后,用一个仿真实验验证了该方法的有效性。 展开更多
关键词 经验模态分解(EMD) 包络线算法 端点问题 极值点对称延拓
在线阅读 下载PDF
经验模态分解的一种改进算法 被引量:22
12
作者 盖广洪 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第11期1199-1202,共4页
针对信号采样频率过低对经验模态分解造成的虚假模态等问题,提出了一种改进的算法,即在进行分解前,对原始信号进行重构,其实质是通过内插的方式来增加采样点数,从而达到增加采样频率的目的.对模拟信号的处理结果表明,该算法消除了分解... 针对信号采样频率过低对经验模态分解造成的虚假模态等问题,提出了一种改进的算法,即在进行分解前,对原始信号进行重构,其实质是通过内插的方式来增加采样点数,从而达到增加采样频率的目的.对模拟信号的处理结果表明,该算法消除了分解过程中包络曲线的异常波动,从而抑制了分解结果中多余模态的出现,使得对模态的物理解释更加清晰.在机械信号处理中,应用该算法成功地提取出机械信号中具有明确物理意义的故障模态,从而增加了机械故障诊断的能力. 展开更多
关键词 经验模态分解 改进算法 采样频率 故障诊断
在线阅读 下载PDF
基于总体平均经验模态分解的语音增强算法研究 被引量:4
13
作者 陈建明 杨龙 《计算机应用与软件》 2017年第9期328-333,共6页
总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD... 总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD和结合小波阈值去噪思想,提出改进的EEMD方法。首先对原始信号进行EEMD分解,得到一系列IMF分量;其次对筛选后的每个IMF计算噪声强度;然后采用小波启发式阈值估计噪声并计算阈值;最后以软阈值的方式滤除每个IMF中噪声并重构信号还原出增强的语音。通过分析仿真信号和实测信号,结果表明:该算法对带噪语音有很好的滤波效果,与其他同类算法相比提高信噪比2~4 d B。 展开更多
关键词 总体平均经验模态分解(EEMD) 小波阈值去噪 语音增强算法
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法 被引量:2
14
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型 被引量:5
15
作者 殷礼胜 刘攀 +3 位作者 孙双晨 吴洋洋 施成 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4499-4508,共10页
该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞... 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。 展开更多
关键词 短时交通流预测 互补集合经验模态分解 麻雀搜索算法 双向门控循环单元 边界局部特征延拓
在线阅读 下载PDF
基于总体平均经验模态分解和一步式字典学习联合去噪的语音端点检测算法 被引量:3
16
作者 张开生 赵小芬 +1 位作者 王泽 宋帆 《科学技术与工程》 北大核心 2020年第35期14536-14542,共7页
针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先... 针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先利用EEMD算法对输入语音进行分解得到本征模式分量(intrinsic mode function,IMF),然后使用OS-DL算法分别对纯净语音信号与噪声信号进行训练,得到纯净语音信号和噪声信号的幅度谱字典,进而对幅度谱进行稀疏表示,利用得到的系数矩阵重新构建出语音信号频谱,将重构出的语音信号频谱经过傅里叶逆变换得到降噪后的语音信号,最后对降噪后的语音信号利用均匀子带频带方差法进行端点检测。实验结果表明,该算法在复杂环境信噪比低于-10 dB情况下检测准确率仍可达到85%以上,且平均检测时间缩短至传统端点检测算法的1/3。 展开更多
关键词 总体平均经验模态分解(EEMD)算法 一步式字典(OS-DL)算法 稀疏表示 子带频带方差 端点检测
在线阅读 下载PDF
基于经验模态分解的子带自适应声学回声消除算法
17
作者 李娜 陆晓明 陈盛云 《三峡大学学报(自然科学版)》 CAS 2010年第3期85-89,共5页
在语音通信中,声学回声消除技术用于消除扬声器与麦克风之间耦合产生的回声干扰.在声学回声抵消系统的实现过程中,可以通过子带技术来提高系统的性能,并减小算法本身的运算量.常见的子带算法多是基于组合滤波器、小波变换实现的.本文基... 在语音通信中,声学回声消除技术用于消除扬声器与麦克风之间耦合产生的回声干扰.在声学回声抵消系统的实现过程中,可以通过子带技术来提高系统的性能,并减小算法本身的运算量.常见的子带算法多是基于组合滤波器、小波变换实现的.本文基于经验模态分解提出一种新的自适应回声消除算法EMD-APNLMS,它克服了基于组合滤波器算法收敛慢的缺点以及基于小波变换算法需要选择小波基的问题.计算机仿真结果表明,该算法实现了回声的消除,收敛速率较快,非常适用回声这种非平稳信号的处理. 展开更多
关键词 回声消除 自适应算法 经验模态分解
在线阅读 下载PDF
基于模态分解和RIME-CNN-BiLSTM-AM的风速预测方法
18
作者 朱婷 颜七笙 《科学技术与工程》 北大核心 2025年第20期8514-8525,共12页
作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical... 作为一种清洁的可再生能源,风能在缓解日益严重的能源危机方面充当着重要作用。然而,风速的波动性和随机性给电力系统的稳定运行带来了严峻的挑战。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与霜冰优化算法(rime optimization algorithm,RIME)-卷积神经网络(convolutional neural network,CNN)-双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)-注意力机制(attention mechanism,AM)的短期风速预测组合模型CEEMDAN-RIME-CNN-BiLSTM-AM。首先,对初始风速序列采用CEEMDAN算法,得到一系列较平稳的子模态,以降低风速序列的波动性;然后,采用RIME霜冰优化算法优化CNN超参数,建立CNN-RIME模型,对风速数据进行自适应提取和挖掘;接着,采用BiLSTM-AM模型对处理后的数据进行预测;最后,将各子序列的预测结果叠加,得到最终预测结果。以某地实际风速数据集进行对比试验,该模型在单步与多步预测中均展现出良好的预测性能,可以为制定调度计划提供参考,以最大程度地提高能源利用率和供电。 展开更多
关键词 风速预测 自适应噪声完备集合经验模态分解(CEEMDAN) 霜冰优化算法(RIME) 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 注意力机制(AM)
在线阅读 下载PDF
TVFEMD寻优分解与智能算法优化的FLN土壤含水量预测
19
作者 田宇 崔东文 《湖北农业科学》 2025年第5期147-154,共8页
以云南省天星站和坡脚站10、20、40 cm 3个土层的土壤含水量观测数据为基础,通过改进时变滤波经验模态分解(TVFEMD)和快速学习网(FLN)方法构建基于多种优化算法的预测模型(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN),提升土壤含水量时间序列预... 以云南省天星站和坡脚站10、20、40 cm 3个土层的土壤含水量观测数据为基础,通过改进时变滤波经验模态分解(TVFEMD)和快速学习网(FLN)方法构建基于多种优化算法的预测模型(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN),提升土壤含水量时间序列预测精度。通过比较各优化算法的模型性能,为土壤水分预测提供更优的建模方法。结果表明,TVFEMD分解效果主要受带宽阈值和B样条阶数2个关键参数影响。采用IVYA算法优化这2个参数可提升时间序列分解质量,进而改善模型预测性能。TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在训练集上表现出卓越的预测性能,其平均绝对百分比误差(MAPE)为0.002%~0.077%,决定系数(R^(2))为0.9997~1.0000;预测集中的MAPE为0.006%~0.459%,R^(2)为0.9966~1.0000。与TVFEMD-PSO-FLN模型相比,TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在拟合性能和预测精度方面均有明显提升。采用BLSO、AO、IVYA和EGO算法优化FLN超参数可有效提升模型性能,其中IVYA算法的优化效果较突出。 展开更多
关键词 时变滤波经验模态分解(TVFEMD) 算法优化 快速学习网(FLN) 土壤含水量 预测
在线阅读 下载PDF
基于二次二维经验模态分解去噪的湍流退化图像复原算法 被引量:6
20
作者 徐斌 葛宝臻 +1 位作者 吕且妮 陈雷 《计算机应用研究》 CSCD 北大核心 2020年第5期1582-1586,共5页
为实现大气湍流环境下的高质量成像,将自适应光学波前探测技术与数字图像处理技术相结合,并提出了一种基于二次二维经验模态分解去噪的湍流退化图像复原算法。通过在光学系统中使用哈特曼-夏克波前传感器探测波前信息,进而计算光学系统... 为实现大气湍流环境下的高质量成像,将自适应光学波前探测技术与数字图像处理技术相结合,并提出了一种基于二次二维经验模态分解去噪的湍流退化图像复原算法。通过在光学系统中使用哈特曼-夏克波前传感器探测波前信息,进而计算光学系统点扩散函数;然后使用改进的二次二维经验模态分解算法进行图像去噪,最后利用R-L算法实现对湍流退化图像的复原。通过搭建光学实验系统,对实际拍摄的湍流退化图像进行了复原实验。结果表明,该算法能够有效减弱噪声放大现象,得到更加稳定的高质量大气湍流退化图像复原结果。 展开更多
关键词 图像复原 二维经验模态分解去噪 自适应阈值法 点扩散函数 R-L算法
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部