期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
基于经验模态分解与投资者情绪的长短期记忆网络股票价格涨跌预测模型 被引量:4
1
作者 翁晓健 林旭东 赵帅斌 《计算机应用》 CSCD 北大核心 2022年第S02期296-301,共6页
针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到... 针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到若干个具有不同时间尺度的局部特征信号的本征模函数(IMF);其次,通过引入改进的股票领域情感词典,对东方财富网股吧的帖子,进行上一个股票交易日收盘后和下一个股票交易日开盘前的投资者情感分析,得到下一个股票交易日的投资者情绪指标;最后,将基础的股票基本行情数据、经过EMD得到的IMF以及投资者情绪指标加入LSTM神经网络预测下一个交易日的股票涨跌。仿真实验结果表明,在2019年1月至2021年9月的牧原股份(002714)股票数据上,与单独使用LSTM模型相比,改进后的LSTM模型的预测准确率提高了12.25个百分点,在预测为涨的F1值和预测为跌的F1值上分别提高了1.2个百分点和25.21个百分点。由此可见,基于EMD与投资者情绪的LSTM股票价格涨跌预测模型有效提高了预测精度,为股票市场的涨跌预测提供了一种有效的实验方法。 展开更多
关键词 股票预测模型 机器学习 投资者情绪 经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
CEEMDAN改进的CNN-LSTM短期电离层TEC预测模型
2
作者 焦迎香 李克昭 岳哲 《导航定位学报》 北大核心 2025年第3期107-115,共9页
针对电离层总电子含量(TEC)值的时序变化通常呈现非线性和随机性的问题,提出一种结合完全集合经验模态分解(CEEMDAN)和基于卷积神经网络和长短时记忆网络的时空网络(CNN-LSTM)神经网络的TEC预测模型:采用分解、预测和重构的方法,结合CEE... 针对电离层总电子含量(TEC)值的时序变化通常呈现非线性和随机性的问题,提出一种结合完全集合经验模态分解(CEEMDAN)和基于卷积神经网络和长短时记忆网络的时空网络(CNN-LSTM)神经网络的TEC预测模型:采用分解、预测和重构的方法,结合CEEMDAN在时间序列分解上和CNN-LSTM在预测精度上的优势,对电离层TEC值进行短期预测;然后利用国际全球卫星导航系统服务组织(IGS)中心发布的2019和2023年4个季节,以及分布在中高低纬度的6个格网点的TEC格网数据进行实验分析。实验结果表明,CEEMDAN-CNN-LSTM组合模型的预测结果能很好地反映电离层TEC的时间变化特性,在2019年太阳活动低年和2023年太阳活动高年的预测精度均方根误差(RMSE)相较于长短时记忆(LSTM)网络模型可分别平均提升2.62总电子含量单位(TECU)和10.44TECU,相较于CNN-LSTM模型可提升1.85TECU和7.23TECU。 展开更多
关键词 电离层总电子含量(TEC) 长短期记忆(LSTM)神经网络 卷积神经网络(CNN) 完全集合经验模态分解(CEEMDAN) 预测模型
在线阅读 下载PDF
基于优化的EMD-LSTM的土石坝沉降预测模型研究
3
作者 李宗淇 姚成林 赵文波 《水利水电技术(中英文)》 北大核心 2025年第S1期272-281,共10页
针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS... 针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS)测点的时间序列数据进行多尺度分解,提取趋势和周期成分。然后,利用主成分分析(PCA)筛选关键影响因子,减少数据维度,提高模型的泛化能力。最后,采用LSTM构建时间序列模型,并通过鲸鱼优化算法(WOA)优化LSTM的超参数,以提升模型的预测精度和收敛速度。实验结果表明,该模型在土石坝沉降预测中具有显著的优势,均方误差(MSE)为7.070 1,平均绝对误差(MAE)为1.885 9,拟合优度(R2)为99.83%。与传统方法相比,该模型在降噪、特征捕捉和超参数优化等方面均有明显提升,可为土石坝沉降提供可靠的预测方案。 展开更多
关键词 土石坝 沉降预测 模型 经验模态分解(EMD) 长短期记忆神经网络(LSTM)
在线阅读 下载PDF
基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测 被引量:49
4
作者 黄凯 丁恒 +1 位作者 郭永芳 田海建 《电工技术学报》 EI CSCD 北大核心 2022年第15期3753-3766,共14页
锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为... 锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为健康因子,数据预处理阶段,首先使用自适应双指数模型平滑方法减少容量回升现象产生的负面影响,然后通过自适应白噪声完整集成经验模态分解(CEEMDAN)对数据进行降噪;模型构建阶段,利用预处理后的数据训练得到用于RUL预测的LSTM模型。以NASA和CALCE公开数据集为研究对象进行算法性能测试,实验结果表明,所提方法鲁棒性好,能够提供精确的RUL预测结果。 展开更多
关键词 锂电池 剩余使用寿命 自适应双指数模型平滑方法 自适应白噪声完整集成经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
基于REMD-CNN-Transformer-LSTM组合模型的碳排放交易价格预测
5
作者 乔松博 孙瑜 +2 位作者 胡海 俞静 王伟 《西安理工大学学报》 北大核心 2025年第2期186-196,共11页
精确预测碳排放交易价格有助于政府制定相关政策和完善市场机制,对确保电碳耦合交易的稳定性和效率具有关键作用。因此如何运用深度学习技术来提高碳排放权价格的预测能力是一个重要问题。本文提出了一种REMD-CNN-Transformer-LSTM多因... 精确预测碳排放交易价格有助于政府制定相关政策和完善市场机制,对确保电碳耦合交易的稳定性和效率具有关键作用。因此如何运用深度学习技术来提高碳排放权价格的预测能力是一个重要问题。本文提出了一种REMD-CNN-Transformer-LSTM多因素碳排放交易价格预测的组合模型。通过对2022年1月至2024年10月的全国碳市场的碳排放交易价格进行实例分析,REMD-CNN-Transformer-LSTM模型较Transformer-LSTM模型和REMD-LSTM模型在MAPE上分别降低了0.6948%和0.4129%,表明该模型的预测更准确,评价指标表现更好。 展开更多
关键词 碳排放交易价格 鲁棒经验模态分解 卷积神经网络 长短期记忆网络 组合模型
在线阅读 下载PDF
非线性非平稳波浪极短期预测的复合优化模型 被引量:6
6
作者 张茴栋 张德康 史宏达 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2022年第4期509-515,共7页
海浪的时间序列一般具有非线性和非平稳性,针对直接对其进行预测精度较差,本文利用复合模型对波浪进行了预测。利用长短期记忆神经网络模型的非线性学习能力和经验模态分解的非平稳数据处理能力,采用镜像对称和长短期记忆算法联合消除... 海浪的时间序列一般具有非线性和非平稳性,针对直接对其进行预测精度较差,本文利用复合模型对波浪进行了预测。利用长短期记忆神经网络模型的非线性学习能力和经验模态分解的非平稳数据处理能力,采用镜像对称和长短期记忆算法联合消除经验模态分解端点效应,建立了一种用于不规则波极短期预测的复合经验模态分解-长短期记忆模型。研究表明:通过比较分析水槽试验获得的一般不规则波、线性聚焦波和非线性畸形波的预测效果,结果揭示出经验模态分解端点效应对模型预测精度具有负面影响,本文基于自适应镜像延拓的复合经验模态分解-长短期记忆模型可以更好地预测极短期非线性、非平稳波浪时序的变化趋势。 展开更多
关键词 波浪极短期预测 水槽试验 非线性与非平稳性 经验模态分解 端点效应 自适应镜像延拓 复合经验模态分解-长短期记忆模型
在线阅读 下载PDF
基于BPNN-EMD-LSTM组合模型的城市短期燃气负荷预测 被引量:27
7
作者 陈川 陈冬林 何李凯 《安全与环境工程》 CAS 北大核心 2019年第1期149-154,169,共7页
城市短期燃气负荷具有高随机性和复杂性特征,利用单一的模型难以做出准确预测。以某城市民用类燃气日负荷为研究对象,在分析该市两年多燃气日负荷特征的基础上,建立了基于BP神经网络(BPNN)-经验模态分解(EMD)-长短期记忆(LSTM)神经网络... 城市短期燃气负荷具有高随机性和复杂性特征,利用单一的模型难以做出准确预测。以某城市民用类燃气日负荷为研究对象,在分析该市两年多燃气日负荷特征的基础上,建立了基于BP神经网络(BPNN)-经验模态分解(EMD)-长短期记忆(LSTM)神经网络的组合预测模型,对该市短期燃气日负荷进行了预测。首先通过BPNN模型学习温度、日期属性影响下燃气负荷的主要特征,增长趋势等次要特征则体现在BPNN模型预测产生的残差中;然后采用EMD算法分解残差得到有限个本征模函数(IMF),并利用LSTM模型学习各IMF分量的短期时序规律,将各IMF分量的预测值相加得到残差预测值;最后将两部分预测值代数相加得到最终的预测结果。实证结果表明:与单一的LSTM模型和BPNN-LSTM模型相比,该组合预测模型半月步长的平均绝对误差为3.4%,预测精度更高,是一种更为有效的城市短期燃气负荷预测方法。 展开更多
关键词 短期燃气负荷 组合预测模型 BP神经网络 经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
基于EMD-CNN-LSTM混合模型的短期电力负荷预测 被引量:52
8
作者 徐岩 向益锋 马天祥 《华北电力大学学报(自然科学版)》 CAS 北大核心 2022年第2期81-89,共9页
为了更有效地提取电力负荷数据中的潜藏特征与隐藏信息,提高电力负荷预测精度,针对负荷具有较强非线性、非平稳性和时序性特点,提出一种基于经验模态分解(empirical mode decomposition,EMD)、卷积神经网络(convolutional neural networ... 为了更有效地提取电力负荷数据中的潜藏特征与隐藏信息,提高电力负荷预测精度,针对负荷具有较强非线性、非平稳性和时序性特点,提出一种基于经验模态分解(empirical mode decomposition,EMD)、卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long-term and short-term memory network,LSTM)的混合模型短期电力负荷预测方法,将海量过往负荷数据、温度和历史电价信息以滑动窗口方式构造串联特征向量作为输入,先利用EMD将数据重构成多个分量,将高、中和低频分量各自叠加组合,再运用CNN提取高、中分量的潜藏特征,减少权值数量,并以特征向量的方式输入LSTM网络进行负荷预测,最后叠加各分量预测结果得到最终负荷预测值。实验结果表明,相对于BP神经网络(Back Propagation Neural Network)、支持向量机(support vector machine,SVM)、LSTM模型和EMD-LSTM模型,此模型具有更高的负荷预测精度。 展开更多
关键词 短期负荷预测 经验模态分解 卷积神经网络 长短期记忆网络 经验模态分解-卷积网络-长短期记忆网络混合模型
在线阅读 下载PDF
基于改进EMD-LSTM的混凝土坝变形预测模型 被引量:3
9
作者 欧斌 张才溢 +4 位作者 陈德辉 王子轩 杨石勇 杨霖 傅蜀燕 《水利水电科技进展》 CSCD 北大核心 2024年第6期93-99,共7页
针对混凝土坝变形监测数据的非线性和复杂性等特征,为提高混凝土坝变形预测的精度,提出了一种基于改进经验模态分解(EMD)法和长短期记忆(LSTM)神经网络的混凝土坝变形预测模型。该模型采用小波阈值方法对EMD法分解的高频分量进行优化处... 针对混凝土坝变形监测数据的非线性和复杂性等特征,为提高混凝土坝变形预测的精度,提出了一种基于改进经验模态分解(EMD)法和长短期记忆(LSTM)神经网络的混凝土坝变形预测模型。该模型采用小波阈值方法对EMD法分解的高频分量进行优化处理,在去除数据噪声的同时,尽可能保留原始数据的特征信息,并运用LSTM神经网络对处理后的数据进行时序预测。实例验证结果表明,该模型能够准确模拟坝体变形过程,具有较高的预测精度。 展开更多
关键词 大坝变形 经验模态分解 长短期记忆神经网络 小波阈值 预测模型
在线阅读 下载PDF
基于EEMD-SE-LSTM 组合模型的开都河日径流模拟研究 被引量:2
10
作者 丁占涛 安杰 +3 位作者 吴国洋 宋昱锋 罗鑫 黄森 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第3期335-341,共7页
为提高开都河日径流模拟的精度和更科学地进行开都河水资源的管理与规划,在集成经验模态分解(EEMD)的基础上进行样本熵(SE)重构来完成长短期记忆网络(LSTM)组合模型的构建。采用集成经验模态分解提取开都河日径流序列中具有物理含义的信... 为提高开都河日径流模拟的精度和更科学地进行开都河水资源的管理与规划,在集成经验模态分解(EEMD)的基础上进行样本熵(SE)重构来完成长短期记忆网络(LSTM)组合模型的构建。采用集成经验模态分解提取开都河日径流序列中具有物理含义的信息,得到一系列本征模态分量(IMF)及一个趋势项(Res),计算每个分量的样本熵,复杂程度接近的子序列叠加为新序列,建立长短期记忆神经网络模型进行预测,叠加得到最终模拟值。结果表明:EEMD-SE-LSTM组合模型日径流模拟的精度得到提高,其确定系数R2=0.81、纳什效率系数NSE=0.73,均高于LSTM模型的R2=0.73、NSE=0.52和EEMD-LSTM模型的R2=0.64、NSE=0.63;EEMD-SE-LSTM组合模型的日径流模拟准确性更高,其评价指标(R2=0.81、NSE=0.73)高于其他单一模型SVM(R2=0.70、NSE=0.58)。EEMD-SE-LSTM组合模型提高了日径流模拟精度,可以更好地为开都河水资源管理与规划提供科学依据。 展开更多
关键词 集成经验模态分解 样本熵 长短期记忆网络 组合模型 日径流模拟
在线阅读 下载PDF
CEEMDAN-CNN-BiLSTM混合模型矿区地表沉降预测 被引量:2
11
作者 王凯 肖星星 +2 位作者 余永明 贾庆磊 赵思仲 《导航定位学报》 CSCD 北大核心 2024年第5期156-163,共8页
为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDA... 为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDAN-CNN-BiLSTM混合地表沉降预测方法:以皖北某大型煤矿开采工作面与工业广场区域为验证对象,对比分析稳定区域和重点监测区域数据形态;然后基于CEEMDAN重构监测站高程数据分量,输入CNN模型提取分量隐含信息;最后构建BiLSTM模型,实现对沉降监测点位数据的短期预测。实验结果表明,相较于传统的CNN和长短期记忆模型,CEEMDAN-CNN-BiLSTM混合模型可有效降低预测误差,其中平均绝对百分比误差(MAPE)的降低范围为40%~90%,而均方根(RMS)误差的降低范围为52%~87%;该模型在时空特征捕捉和泛化能力方面表现性能较好,可为GNSS时间序列短期预测提供更为精准和可靠的解决方案。 展开更多
关键词 沉降预测 自动化监测 时序数据 混合模型 自适应噪声完备集合经验模态分解(CEEMDAN)-卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)
在线阅读 下载PDF
融合流-热场耦合仿真与EEMD-LSTM网络的油浸式变压器热点温度快速预测方法
12
作者 杨子坚 司马文霞 +3 位作者 杨鸣 黎文浩 袁涛 孙魄韬 《高电压技术》 北大核心 2025年第3期1220-1232,共13页
快速准确地预测变压器热点温度是实现变压器状态检测、故障预测以及动态增容的重要前提,其关键是实现变压器热点温度动态预测以及提高热点温度预测模型的抗噪性能。该文通过流-热场耦合仿真计算,获取不同环境温度和负载变化工况的热点... 快速准确地预测变压器热点温度是实现变压器状态检测、故障预测以及动态增容的重要前提,其关键是实现变压器热点温度动态预测以及提高热点温度预测模型的抗噪性能。该文通过流-热场耦合仿真计算,获取不同环境温度和负载变化工况的热点温度训练样本,采用长短期记忆网络(long short-term memory network,LSTM)构建深度学习模型,从而实现热点温度动态预测。采用集成经验模态分解(ensemble empirical mode decomposition,EEMD)降低输入数据中的噪声干扰,提高深度学习模型抗噪性能。以20 MVA/110 kV油浸式变压器为对象进行分析,并搭建变压器热点温升试验平台进行模型有效性验证,EEMD-LSTM网络预测的热点温度相比试验结果的平均误差仅有1.35℃,引入幅值为5℃的随机噪声后,最大误差仅增大0.47℃。结果表明:基于EEMD-LSTM网络的深度学习模型能够实现变压器热点温度动态预测,同时具有良好的抗噪性能,对变压器负荷能力动态评估与动态增容的研究具有重要意义。 展开更多
关键词 热点温度 -热场耦合仿真 长短期记忆网络 集成经验模态分解 油浸式变压器
在线阅读 下载PDF
InSAR监测数据的地表沉陷深度学习预测模型研究
13
作者 李刚 支梦辉 +3 位作者 李斌 杨帆 彭志伟 李东亮 《中国安全科学学报》 北大核心 2025年第S1期107-113,共7页
为研究地下采矿引发的地面沉降预测问题,以山西省晋城市阳城县为背景开展地表沉降监测与预测方法研究。首先,获取2018年1月至2020年12月期间的Sentinel-1 SAR影像(81景),结合数字高程模型(DEM)、大气校正在线服务(GACOS)及精密轨道数据... 为研究地下采矿引发的地面沉降预测问题,以山西省晋城市阳城县为背景开展地表沉降监测与预测方法研究。首先,获取2018年1月至2020年12月期间的Sentinel-1 SAR影像(81景),结合数字高程模型(DEM)、大气校正在线服务(GACOS)及精密轨道数据,采用小基线集干涉合成孔径雷达(SBAS-InSAR)技术精细化监测区域地表形变情况,揭示其时序演化与空间分布特征(最大沉降速率达27.84 mm/a);然后,构建基于变分模态分解(VMD)与反向传播(BP)神经网络相结合的混合预测模型(VMD-BP);最后,将该模型预测性能与传统长短期记忆网络(LSTM)模型及变分模态分解与长短期记忆网络(VMD-LSTM)模型进行对比分析。结果表明:VMD-BP模型显著提升了预测精度,在测试点位(点位a)的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)分别低至0.27801 mm、0.23429 mm和0.39%,远优于LSTM及VMD-LSTM模型。 展开更多
关键词 地面沉降 形变预测 小基线集干涉合成孔径雷达(SBAS-InSAR)技术 长短期记忆网络(LSTM)模型 变分模态分解-长短期记忆网络(VMD-BP)模型
在线阅读 下载PDF
基于EMD-PSO-LSTM组合模型的船舶运动姿态预测 被引量:24
14
作者 彭秀艳 张彪 《中国惯性技术学报》 EI CSCD 北大核心 2019年第4期421-426,共6页
由于船舶在海上航行时的高随机性和复杂性,单一模型预测能力有限,难以做出准确姿态预测。因此,提出一种基于经验模态分解(EMD)和粒子群优化(PSO)的长短期记忆神经网络(LSTM)的组合预测模型,对船舶运动姿态进行预测。首先通过EMD算法将... 由于船舶在海上航行时的高随机性和复杂性,单一模型预测能力有限,难以做出准确姿态预测。因此,提出一种基于经验模态分解(EMD)和粒子群优化(PSO)的长短期记忆神经网络(LSTM)的组合预测模型,对船舶运动姿态进行预测。首先通过EMD算法将由惯性导航系统在实时测量得到的船舶运动姿态数据进行分解,得到有限个本征模函数(IMF)。然后,利用PSO-LSTM模型学习各IMF分量的短期时序规律并进行预测,将各IMF分量的预测值相加得到最终的预测结果。基于实测数据进行仿真的结果表明,该组合预测模型分别比LSTM模型和PSO-LSTM模型在姿态角的预测中平均绝对百分比误差分别降低了约11%和7%,有效提高了船舶运动姿态预测精度。 展开更多
关键词 组合模型 长短期记忆 神经网络 经验模态分解 船舶运动姿态预测 粒子群优化
在线阅读 下载PDF
基于ELM-EMD-LSTM组合模型的船舶运动姿态预测 被引量:17
15
作者 张彪 彭秀艳 高杰 《船舶力学》 EI CSCD 北大核心 2020年第11期1413-1421,共9页
在随机变动的海洋环境中,采用单一预测模型对船舶运动进行预报,预报值有时出现大的随机波动,预测误差超出安全限,对船舶运动控制和决策带来严重后果。本文提出了基于极限学习机(ELM)、经验模态分解(EMD)和长短期记忆(LSTM)神经网络的组... 在随机变动的海洋环境中,采用单一预测模型对船舶运动进行预报,预报值有时出现大的随机波动,预测误差超出安全限,对船舶运动控制和决策带来严重后果。本文提出了基于极限学习机(ELM)、经验模态分解(EMD)和长短期记忆(LSTM)神经网络的组合预测模型,对船舶运动姿态进行预测。首先,通过ELM模型预测方法进行船舶运动姿态的初始预测,然后采用EMD算法分解初始预测残差得到有限个本征模函数(IMF),并利用LSTM模型学习各IMF分量的短期时序规律进行预测,将各IMF分量的预测值相加得到残差预测值;最后将初始预测值与残差预测值组合得到最终的预测结果。仿真结果表明:与单一的LSTM模型和ELM-LSTM模型相比,该组合预测模型的平均绝对误差及均方根误差均为最小,预测精度更高,是一种更为有效的船舶运动姿态预测方法。 展开更多
关键词 组合模型 极限学习机 经验模态分解 船舶运动姿态预测 长短期记忆神经网络
在线阅读 下载PDF
基于关键特征排序的可解释碳排放预测模型 被引量:5
16
作者 张向阳 刘树仁 +2 位作者 刘宝亮 李长春 付占宝 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期190-197,共8页
提出基于关键特征排序的可解释碳排放预测模型(EEMD-LSTM-ATT),选取人口总数、城镇化率、第一产业国内生产总值、第二产业国内生产总值、第三产业国内生产总值与进出口贸易总额这6个变量,以非线性预测能力强的长短时记忆网络为基线模型... 提出基于关键特征排序的可解释碳排放预测模型(EEMD-LSTM-ATT),选取人口总数、城镇化率、第一产业国内生产总值、第二产业国内生产总值、第三产业国内生产总值与进出口贸易总额这6个变量,以非线性预测能力强的长短时记忆网络为基线模型,采用注意力机制提取影响因素与时间属性的权重信息。结果表明:该模型一方面能够抑制模态混叠的产生,减少数据非线性对于模型预测带来的影响;另一方面能够解释不同时间属性与不同影响因素对于碳排放的重要性程度,使得预测结果具备可解释性;将影响因素与时间属性的权重信息加入模型的训练过程能够促进碳排放影响因素与模型预测有机结合;本文方法可实现高精度碳排放预测,均方根误差为3.772,平均绝对误差为3.416,拟合优度为0.880。 展开更多
关键词 集合经验模态分解 长短期记忆模型 注意力机制 预测模型
在线阅读 下载PDF
基于EMD与K-means的ILSTM模型在池塘溶解氧预测中的应用 被引量:8
17
作者 谢雨茜 李路 +3 位作者 朱明 谭鹤群 李家庆 宋均琦 《华中农业大学学报》 CAS CSCD 北大核心 2022年第3期200-210,共11页
为提高池塘溶氧量预测精度并改善预测结果滞后的情况,本研究提出基于经验模态分解(empirical modedecomposition,EMD)与K-means聚类的改进长短期记忆神经网络(improvedlongshort-timememory,IL⁃STM)模型。利用皮尔森相关性分析与主成分... 为提高池塘溶氧量预测精度并改善预测结果滞后的情况,本研究提出基于经验模态分解(empirical modedecomposition,EMD)与K-means聚类的改进长短期记忆神经网络(improvedlongshort-timememory,IL⁃STM)模型。利用皮尔森相关性分析与主成分分析结合的方法对原始数据进行特征提取,对溶氧量进行EMD分解,将选出的环境参数与溶氧量各分量一起生成样本集,并对其进行K-means聚类。针对同类中不同分解分量建立相应ILSTM预测模型,并用网格搜索、五折交叉验证与早停法进行超参数选取。对未来1 h池塘溶氧量进行预测,并与LSTM、ILSTM、LSTM-SVR、EMD-LSTM、EMD-ILSTM模型进行对比试验。结果显示,IL⁃STM与LSTM模型相比,RMSE、MAE与MAPE分别下降了50.46%、63.20%与68.96%,证明ILSTM模型能缓解传统LSTM模型预测的滞后情况。EMD-ILSTM模型与ILSTM模型相比,RMSE、MAE与MAPE分别下降了53.22%、46.74%与38.19%,证明EMD算法能提高预测精度。EMD-KILSTM模型的RMSE、MAE、MAPE分别为0.1099 mg/L、0.0749 mg/L、9.3278%,与EMD-ILSTM模型相比,分别下降了4.35%、7.42%与8.09%,证明K-means聚类能提高预测精度,并且EMD-KILSTM模型是对比模型中预测效果最好的模型。以上结果表明,EMD-KILSTM模型能从时间尺度与历史环境类别两个方面深度分析溶氧量的特征,拥有更高的预测精度与更好的泛化能力。 展开更多
关键词 池塘养殖 溶解氧 长短期记忆神经网络 经验模态分解 K-MEANS聚类 预测模型
在线阅读 下载PDF
基于EEMD-LSTM-MLR的大坝变形组合预测模型 被引量:32
18
作者 马佳佳 苏怀智 王颖慧 《长江科学院院报》 CSCD 北大核心 2021年第5期47-54,共8页
大坝变形监测数据序列具有非平稳、非线性特征,是水压、温度和时效综合作用的结果。引入集合经验模态分解(EEMD)方法处理变形数据,在得到多尺度大坝变形分量的基础上,对于其变化复杂的高频分量,采取长短期记忆神经网络(LSTM)以获得较优... 大坝变形监测数据序列具有非平稳、非线性特征,是水压、温度和时效综合作用的结果。引入集合经验模态分解(EEMD)方法处理变形数据,在得到多尺度大坝变形分量的基础上,对于其变化复杂的高频分量,采取长短期记忆神经网络(LSTM)以获得较优预测结果;对于周期性变化的低频分量,借助多元线性回归(MLR)实现快捷且有效的预测;最终通过分量重构,得到大坝变形的预测结果。工程实例分析表明:EEMD方法避免了模态混叠现象,可以得到更为合理的多尺度变形分量;LSTM和MLR分别对高、低频分量具有良好的预测能力。将分量叠加重构的最终结果分别与多种单一预测算法、基于EMD的组合算法以及传统模型等预测效果比较表明,基于EEMD-LSTM-MLR的组合预测模型的平均绝对误差(MAE)、平均绝对百分误差(MAPE)及均方根误差(RMSE)均低于上述对比模型,有着更高的预测精度,为大坝变形预测提供了新的思路。 展开更多
关键词 大坝变形 组合预测模型 集合经验模态分解 长短期记忆神经网络 多元线性回归
在线阅读 下载PDF
基于EEMD-LSTM模型的禽霍乱预测研究 被引量:3
19
作者 何振欢 肖建华 《动物医学进展》 北大核心 2022年第11期34-38,共5页
禽霍乱是一种由多杀性巴氏杆菌引起的接触性、败血性传染病,鸡、鸭和鹅等禽类均易感。由于目前我国广泛使用的禽霍乱弱毒疫苗和灭活疫苗副作用大、免疫期短且保护率低,免疫后的禽类仍有患病的风险。因此,对禽霍乱的监控尤为重要。利用MA... 禽霍乱是一种由多杀性巴氏杆菌引起的接触性、败血性传染病,鸡、鸭和鹅等禽类均易感。由于目前我国广泛使用的禽霍乱弱毒疫苗和灭活疫苗副作用大、免疫期短且保护率低,免疫后的禽类仍有患病的风险。因此,对禽霍乱的监控尤为重要。利用MATLAB 2020b软件构建了基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和长短期记忆(long short-term memory,LSTM)模型的EEMD-LSTM组合模型的禽霍乱预测方法。利用2006年-2015年禽霍乱的发病数训练模型,预测2016年-2020年禽霍乱的发病数,并与实际发病数验证,然后通过计算实际发病数与预测发病数的线性回归系数R^(2)值和组内相关系数(intraclass correlation coefficient,ICC)值,分析实际发病数与预测发病数的一致性。结果显示,模型训练期的R^(2)值和ICC值分别为0.9935和0.997,其ICC值大于0.75并接近于1,表明该模型具有良好的预测能力,可用于预测禽霍乱的发病趋势;模型预测期的R^(2)值和ICC值分别为0.7507和0.825,其ICC值大于0.75,同时大于Landis和Koch的建议值0.80,表明该模型具有良好的可信度。该模型的建立可为禽霍乱的防控提供参考,同时也为该模型的其他应用研究提供理论依据。 展开更多
关键词 禽霍乱 机器学习 集合经验模态分解模型 长短期记忆模型
在线阅读 下载PDF
基于EEMD和LSTM的轴承故障识别模型 被引量:1
20
作者 黄聪 周军晖 董晋明 《机械设计》 CSCD 北大核心 2024年第8期96-102,共7页
滚动轴承作为列车走行部的核心组成部分,其工作状态直接决定着整个列车的安全性。车辆轴承的异常振动信号多为非平稳非线性信号,针对传统时频分析方法对该类信号处理的局限性,文中提出了一种基于集合经验模态分解(EEMD)和长短期记忆神... 滚动轴承作为列车走行部的核心组成部分,其工作状态直接决定着整个列车的安全性。车辆轴承的异常振动信号多为非平稳非线性信号,针对传统时频分析方法对该类信号处理的局限性,文中提出了一种基于集合经验模态分解(EEMD)和长短期记忆神经网络(LSTM)的故障识别模型。针对传统HHT中经验模态分解EMD的模态混叠等问题,提出了采用一种改进的集合经验模态分解方法(EEMD),有效地分解原始振动数据,并通过相关系数法剔除趋势项分量,从而更好地识别轴承故障,并有效地预测轴承的故障情况。通过小波阈值法对高频含噪分量去噪,对去噪后的高频分量和低频信息分量进行加权重构,采用Hilbert-Huang变换来优化处理流程,计算出时间-瞬时频率-瞬时能量之间的相互关系。将Hilbert谱输入至长短期记忆神经网络(LSTM)中提取特征,判断车辆轴承的故障模式。文中试验结果表明:该模型可有效实现对轨道车辆轴承振动的特征提取,并对其故障形式给出高置信度的诊断。 展开更多
关键词 车辆轴承 故障诊断 经验模态分解 希尔伯特-黄变换 长短期记忆网络 小波阈值降噪
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部