利用具备亚微米量级空间分辨率和纳秒级时间分辨率的热反射测温技术对工作在脉冲偏置条件下的CGH4006P型Ga N HEMT进行了瞬态温度检测。测量了Ga N器件表面栅极、漏极和源极金属各部位在20μs内的瞬态温度幅度、分布及变化速度等数据。...利用具备亚微米量级空间分辨率和纳秒级时间分辨率的热反射测温技术对工作在脉冲偏置条件下的CGH4006P型Ga N HEMT进行了瞬态温度检测。测量了Ga N器件表面栅极、漏极和源极金属各部位在20μs内的瞬态温度幅度、分布及变化速度等数据。栅极、漏极和源极的温度幅度有着非常明显的差距,器件表面以栅为中心呈现较大的温度分布梯度。器件表面栅金属温度变化幅度最高、变化速度最快,其主要温度变化发生在5μs之内。经过仔细分析,器件各部位温度差异的主要原因是器件的传热方向、不同区域与发热点的距离。展开更多
基于Ga N高电子迁移率晶体管(HEMT)技术,研制了在0.8-4 GHz频率下,输出功率大于50 W的宽带平衡式功率放大器。采用3 d B耦合器电桥构建平衡式功率放大器结构;采用多节阻抗匹配技术设计了输入/输出匹配网络,实现了功率放大器的宽带特性...基于Ga N高电子迁移率晶体管(HEMT)技术,研制了在0.8-4 GHz频率下,输出功率大于50 W的宽带平衡式功率放大器。采用3 d B耦合器电桥构建平衡式功率放大器结构;采用多节阻抗匹配技术设计了输入/输出匹配网络,实现了功率放大器的宽带特性;采用高介电常数Al2O3基材实现了小型化功率放大器单元;采用热膨胀系数与Si C接近的铜-钼-铜载板作为Ga N HEMT管芯共晶载体,防止功率管芯高温工作过程中因为热膨胀而烧毁。测试结果表明,在0.8-4 GHz频带内,功率放大器功率增益大于6.4 d B,增益平坦度为±1.5 d B,饱和输出功率值大于58.2 W,漏极效率为41%-62%。展开更多
增强型氮化镓(GaN)基高电子迁移率晶体管(high electron mobility transistor,HEMT)是高频高功率器件与开关器件领域的研究热点,P-GaN栅技术因具备制备工艺简单、可控且工艺重复性好等优势而成为目前最常用且唯一实现商用的GaN基增强型...增强型氮化镓(GaN)基高电子迁移率晶体管(high electron mobility transistor,HEMT)是高频高功率器件与开关器件领域的研究热点,P-GaN栅技术因具备制备工艺简单、可控且工艺重复性好等优势而成为目前最常用且唯一实现商用的GaN基增强型器件制备方法。首先,概述了当前制约P-GaN栅结构GaN基HEMT器件发展的首要问题,从器件结构与器件制备工艺这2个角度,综述了其性能优化举措方面的最新研究进展。然后,通过对研究进展的分析,总结了当前研究工作面临的挑战以及解决方法。最后,对未来的发展前景、发展方向进行了展望。展开更多
综述了近几年微波、毫米波氮化镓高电子迁移率晶体管(Ga N HEMT)与单片微波集成电路(MMIC)在高效率、宽频带、高功率和先进热管理等方面的应用创新进展。介绍了基于Ga N HEMT器件所具有的高功率密度和高击穿电压,采用波形工程原理设计...综述了近几年微波、毫米波氮化镓高电子迁移率晶体管(Ga N HEMT)与单片微波集成电路(MMIC)在高效率、宽频带、高功率和先进热管理等方面的应用创新进展。介绍了基于Ga N HEMT器件所具有的高功率密度和高击穿电压,采用波形工程原理设计的各类开关模式的高效率功率放大器,以及基于Ga N HEMT器件的高功率密度、高阻抗的特点与先进的宽带拓扑电路和功率合成技术相结合的宽频带和高功率放大器。详细介绍了微波高端和毫米波段的高效率、宽频带和高功率放大器,多功能电路和多功能集成的Ga N MMIC。最后阐述了由于Ga N HEMT的功率密度是其他半导体器件的数倍,其先进热管理的创新研究也成为热点。展开更多
氮化镓高电子迁移率晶体管(Ga N HEMT)器件具有高功率和功率密度、高导热率、高击穿场强、宽工作频带等特点,适合小型化、宽频带、大功率应用。基于Ga N功率器件的特点研制了P波段宽带小型化40 W发射模块。通过负载牵引技术对Ga N HEMT...氮化镓高电子迁移率晶体管(Ga N HEMT)器件具有高功率和功率密度、高导热率、高击穿场强、宽工作频带等特点,适合小型化、宽频带、大功率应用。基于Ga N功率器件的特点研制了P波段宽带小型化40 W发射模块。通过负载牵引技术对Ga N HEMT器件进行了大信号参数的提取,运用ADS软件进行了匹配电路的设计,对功率放大器的性能指标进行了优化,并基于LTC4440和n MOS器件设计了高压脉冲调制电路。研制结果表明,该模块在400 MHz工作带宽内(相对带宽100%)的输出功率为46.6 d Bm(45.7 W),功率增益为36.6 d B,功率附加效率(PAE)为40.4%,杂波抑制为65.7 d Bc,脉冲顶降为0.4 d B,脉冲上升时间为75 ns,脉冲下降时间为50 ns,模块尺寸为50 mm×40 mm×20 mm。展开更多
文摘利用具备亚微米量级空间分辨率和纳秒级时间分辨率的热反射测温技术对工作在脉冲偏置条件下的CGH4006P型Ga N HEMT进行了瞬态温度检测。测量了Ga N器件表面栅极、漏极和源极金属各部位在20μs内的瞬态温度幅度、分布及变化速度等数据。栅极、漏极和源极的温度幅度有着非常明显的差距,器件表面以栅为中心呈现较大的温度分布梯度。器件表面栅金属温度变化幅度最高、变化速度最快,其主要温度变化发生在5μs之内。经过仔细分析,器件各部位温度差异的主要原因是器件的传热方向、不同区域与发热点的距离。
文摘基于Ga N高电子迁移率晶体管(HEMT)技术,研制了在0.8-4 GHz频率下,输出功率大于50 W的宽带平衡式功率放大器。采用3 d B耦合器电桥构建平衡式功率放大器结构;采用多节阻抗匹配技术设计了输入/输出匹配网络,实现了功率放大器的宽带特性;采用高介电常数Al2O3基材实现了小型化功率放大器单元;采用热膨胀系数与Si C接近的铜-钼-铜载板作为Ga N HEMT管芯共晶载体,防止功率管芯高温工作过程中因为热膨胀而烧毁。测试结果表明,在0.8-4 GHz频带内,功率放大器功率增益大于6.4 d B,增益平坦度为±1.5 d B,饱和输出功率值大于58.2 W,漏极效率为41%-62%。
文摘增强型氮化镓(GaN)基高电子迁移率晶体管(high electron mobility transistor,HEMT)是高频高功率器件与开关器件领域的研究热点,P-GaN栅技术因具备制备工艺简单、可控且工艺重复性好等优势而成为目前最常用且唯一实现商用的GaN基增强型器件制备方法。首先,概述了当前制约P-GaN栅结构GaN基HEMT器件发展的首要问题,从器件结构与器件制备工艺这2个角度,综述了其性能优化举措方面的最新研究进展。然后,通过对研究进展的分析,总结了当前研究工作面临的挑战以及解决方法。最后,对未来的发展前景、发展方向进行了展望。
文摘综述了近几年微波、毫米波氮化镓高电子迁移率晶体管(Ga N HEMT)与单片微波集成电路(MMIC)在高效率、宽频带、高功率和先进热管理等方面的应用创新进展。介绍了基于Ga N HEMT器件所具有的高功率密度和高击穿电压,采用波形工程原理设计的各类开关模式的高效率功率放大器,以及基于Ga N HEMT器件的高功率密度、高阻抗的特点与先进的宽带拓扑电路和功率合成技术相结合的宽频带和高功率放大器。详细介绍了微波高端和毫米波段的高效率、宽频带和高功率放大器,多功能电路和多功能集成的Ga N MMIC。最后阐述了由于Ga N HEMT的功率密度是其他半导体器件的数倍,其先进热管理的创新研究也成为热点。
文摘氮化镓高电子迁移率晶体管(Ga N HEMT)器件具有高功率和功率密度、高导热率、高击穿场强、宽工作频带等特点,适合小型化、宽频带、大功率应用。基于Ga N功率器件的特点研制了P波段宽带小型化40 W发射模块。通过负载牵引技术对Ga N HEMT器件进行了大信号参数的提取,运用ADS软件进行了匹配电路的设计,对功率放大器的性能指标进行了优化,并基于LTC4440和n MOS器件设计了高压脉冲调制电路。研制结果表明,该模块在400 MHz工作带宽内(相对带宽100%)的输出功率为46.6 d Bm(45.7 W),功率增益为36.6 d B,功率附加效率(PAE)为40.4%,杂波抑制为65.7 d Bc,脉冲顶降为0.4 d B,脉冲上升时间为75 ns,脉冲下降时间为50 ns,模块尺寸为50 mm×40 mm×20 mm。