针对引力搜索算法(Gravitational Search Algorithm,GSA)收敛速度较快、易陷入局部最优的缺点,提出一种加入斥力的引力搜索算法RFGSA(Repulsion Force based Gravitational Search Algorithm)。该算法在引力搜索算法中引入斥力,即将一...针对引力搜索算法(Gravitational Search Algorithm,GSA)收敛速度较快、易陷入局部最优的缺点,提出一种加入斥力的引力搜索算法RFGSA(Repulsion Force based Gravitational Search Algorithm)。该算法在引力搜索算法中引入斥力,即将一部分引力变为斥力,从而增加种群的多样性,有利于寻找全局最优。对10个基准测试函数进行优化的结果表明:该算法的收敛结果明显优于遗传算法、粒子群算法及原始的引力搜索算法。展开更多
文摘针对引力搜索算法(Gravitational Search Algorithm,GSA)收敛速度较快、易陷入局部最优的缺点,提出一种加入斥力的引力搜索算法RFGSA(Repulsion Force based Gravitational Search Algorithm)。该算法在引力搜索算法中引入斥力,即将一部分引力变为斥力,从而增加种群的多样性,有利于寻找全局最优。对10个基准测试函数进行优化的结果表明:该算法的收敛结果明显优于遗传算法、粒子群算法及原始的引力搜索算法。
文摘蜣螂优化器(dung beetle optimizer,DBO)是一种有效的元启发式算法。蜣螂优化算法虽然具有寻优能力强,收敛速度快的特点,但同时也存在全局探索和局部开发能力不平衡,容易陷入局部最优,且全局探索能力较弱的缺点。提出了一种改进的DBO算法来解决全局优化问题,命名为MSADBO。受改进正弦算法(improved sine algorithm,MSA)的启发,赋予蜣螂MSA的全局探索和局部开发能力,扩大其搜索范围,提高全局探索能力,减少陷入局部最优的可能性。同时加入了混沌映射初始化和变异算子进行扰动。为了验证MSADBO的有效性,对该算法采用23个基准测试函数进行了测试,并与其他知名的元启发式算法进行了比较。结果表明,该算法具有良好的性能。为了进一步阐述MSADBO算法的实际应用潜力,将该算法成功地应用于3个工程设计问题。实验结果表明,所提出的MSADBO算法可以有效地处理实际应用问题。