With the rapid development of computer science and artificial intelligence technology, the complexity and intelligence of the neural network models constructed by people have been greatly improved. When the complex ne...With the rapid development of computer science and artificial intelligence technology, the complexity and intelligence of the neural network models constructed by people have been greatly improved. When the complex neuron system is subjected to the impact of "catastrophic", its original characteristics may be changed, and the consequences are difficult to predict. Catastrophe dynamics mainly studies the source of the sudden violent change of nature and human society and its evolution. The impact of the system can be divided into endogenous and exogenous shocks. In this article, catastrophe theory is used to study the neuron system. Based on the mean field model of Hurst and Sornette, introducing the weight parameters, mathematical models are constructed to study the response characteristics of the neuron system in face of exogenous shocks, endogenous shocks, and integrated shocks. The time characteristics of the shock response of the neuron system are discussed too, such as the instantaneous and long-term response of the system in face of shocks, the different response forms according to the weight or linear superposition, and the influence of adjusting parameters on the neuron system. The research result shows that the authoritarian coefficient and weight coefficient have a very important influence on the response of neuron system; By adjusting the two coefficients, the purpose of disaster prevention, self-healing protection and response reducing can be well achieved.展开更多
Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently ...Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.展开更多
基金Project(CX2016B142)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘With the rapid development of computer science and artificial intelligence technology, the complexity and intelligence of the neural network models constructed by people have been greatly improved. When the complex neuron system is subjected to the impact of "catastrophic", its original characteristics may be changed, and the consequences are difficult to predict. Catastrophe dynamics mainly studies the source of the sudden violent change of nature and human society and its evolution. The impact of the system can be divided into endogenous and exogenous shocks. In this article, catastrophe theory is used to study the neuron system. Based on the mean field model of Hurst and Sornette, introducing the weight parameters, mathematical models are constructed to study the response characteristics of the neuron system in face of exogenous shocks, endogenous shocks, and integrated shocks. The time characteristics of the shock response of the neuron system are discussed too, such as the instantaneous and long-term response of the system in face of shocks, the different response forms according to the weight or linear superposition, and the influence of adjusting parameters on the neuron system. The research result shows that the authoritarian coefficient and weight coefficient have a very important influence on the response of neuron system; By adjusting the two coefficients, the purpose of disaster prevention, self-healing protection and response reducing can be well achieved.
基金Project(11372263)supported by the National Natural Science Foundation of China
文摘Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.