The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is...In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.展开更多
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
文摘In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.